欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2019, Vol. 36 ›› Issue (5): 702-708.DOI: 10.7523/j.issn.2095-6134.2019.05.016

• 计算机科学 • 上一篇    下一篇

一种基于高斯曲率的ICP改进算法

王飞鹏, 肖俊, 王颖, 王云标   

  1. 中国科学院大学人工智能技术学院, 北京 100049
  • 收稿日期:2018-04-02 修回日期:2018-05-08 发布日期:2019-09-15
  • 通讯作者: 肖俊
  • 基金资助:
    中国科学院前沿科学重点研究项目(QYZDY-SSW-SYS004)、北京市科技新星计划(Z171100001117048)、北京市科技计划课题(Z181100003818019)、国家自然科学基金(61471338,61802362)和中国科学院青年促进会基金(2015361)资助

An improved ICP method using Gaussian curvature

WANG Feipeng, XIAO Jun, WANG Ying, WANG Yunbiao   

  1. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-04-02 Revised:2018-05-08 Published:2019-09-15

摘要: 在众多的点云配准算法中,ICP算法以其所需的信息少,配准精度高而被广泛使用。然而,因其算法迭代最优化的特点,ICP本身存在时间复杂度高、易受噪声及离群点影响等缺点。针对这些问题,提出一种基于高斯曲率的ICP改进方法。该方法首先利用高斯曲率在刚体变换中保持不变的性质,对配准点云中每个点进行高斯曲率估计;其次,通过设置阈值将配准非关键点及噪声点和离群点滤除;最后,对只包含关键点的点云使用ICP进行配准。实验结果表明,在保证配准精度的前提下,本方法不仅能显著地改善ICP的运行效率,也能有效地提高其抗噪声和离群点的能力。

关键词: 点云配准, ICP, 高斯曲率

Abstract: As one of basic topics of computer vision, 3-D point cloud registration has been studied for decades. Among the works, ICP (iterative closest point) is the most well-known algorithm for its simplicity and accuracy. However, due to its iteratively greedy strategy, ICP is time consuming, prone to local minima, and hence susceptible to noise and outliers. In the work, we present a method to improve the performance of ICP in terms of both efficiency and robustness. Firstly, the method estimates Gaussian curvature of each point in the point clouds. Secondly, the method filters out those points which are considered to be trivial points, outliers, and noise. Then, the method applies ICP to the remaining points. The results demonstrate that our method improves both efficiency and resilience against outliers and noise of ICP without causing accuracy degeneration.

Key words: point cloud registration, ICP, Gaussian curvature

中图分类号: