欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2023, Vol. 40 ›› Issue (5): 701-709.DOI: 10.7523/j.ucas.2022.017

• 简报 • 上一篇    下一篇

基于共轴双旋翼无人机的目标检测与薄弱位置定位系统设计

冯航涛1,2, 曾少锋1,2, 张璐1,2, 杨旭1,2,3, 刘智勇1,2,3   

  1. 1. 中国科学院大学人工智能学院, 北京 100049;
    2. 中国科学院自动化研究所复杂系统管理与控制国家重点实验室, 北京 100190;
    3. 中国科学院脑科学与智能技术卓越创新中心, 上海 200031
  • 收稿日期:2021-11-01 修回日期:2022-03-09 发布日期:2022-03-21
  • 通讯作者: 刘智勇,E-mail:zhiyong.liu@ia.ac.cn
  • 基金资助:
    科技部科技创新2030-“新一代人工智能”重大项目(2020AAA0108902)、中国科学院战略性先导科技专项(XDB32050100)、东莞市核心技术攻关项目(2019622101001)和国家自然科学基金(61627808)资助

Design of object detection and weak position location system base on coaxial dual-rotor drone

FENG Hangtao1,2, ZENG Shaofeng1,2, ZHANG Lu1,2, YANG Xu1,2,3, LIU Zhiyong1,2,3   

  1. 1. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China;
    2. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
    3. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
  • Received:2021-11-01 Revised:2022-03-09 Published:2022-03-21

摘要: 由自主控制算法控制的非载人无人飞行器在执行定向打击等危险任务中往往比有人机具有更大的优势。然而,在执行爆破任务的时候,无人机在不同场景下的检测算法鲁棒性往往无法得到保证,这极大地影响了无人机对目标的定位效果,导致执行任务的成功率大幅降低。为解决上述问题,提出利用基于跨域的目标检测算法提高无人机在不同场景下检测算法的鲁棒性,并通过在线GPS聚类算法提高无人机对目标定位的稳定性。同时,鉴于目标爆破位置对爆破结果的影响,提出一种薄弱部位定位算法,提高爆破的精确度和成功率。

关键词: 无人机, 目标检测, 知识蒸馏, 图像分割

Abstract: Unmanned aerial vehicles (UAV) controlled by autonomous control algorithms often have greater advantages than manned aircraft in the execution of directional strikes and other dangerous tasks. When performing blasting tasks, the robustness of the UAV detection algorithm in different scenarios is often not guaranteed, which greatly affects the UAV's positioning of the target, thus reducing the success rate of the mission. In order to solve the above problems, the crossdomain-based object detection algorithm is used to improve the robustness of the UAV detection algorithm in different scenarios, and the online GPS clustering algorithm is used to improve the robustness of object positioning. At the same time, in view of the impact of the object blasting position on the blasting result, the system uses an algorithm for locating weak parts to improve the accuracy and success rate of blasting.

Key words: unmanned aerial vehicles, object detection, knowledge distillation, image segmentation

中图分类号: