[1] DOE selects 8 projects on capture and storage of CO2.Greenhouse Issues,2004,71 :6~7[2] US Sequestration Conference.Greenhouse Issues,2001,55 :2~3[3] Benbow DSS,Maul P,Riding JB.Long term performance of geological storage of CO2.Greenhouse Issues,2004,70 : 5~6[4] Steinberg M,Cheng HC.Modern and prospective technologies for hydrogen production fromfossil fuels.Int.J.Hydrogen Energy,1989,14 (11) :797~820[5] Murakami M,Ikenouchi M.The biological CO2 fixation and utilization project by RITE (2) : Screening and breeding of microalgae with high capability in fixing CO2.Energy Conversion and Management,1997,38 : S493~S497[6] Kodama N,Ikemoto H,Miaychi S.A new species of highly CO22tolerant fast2growing marine microalga suitable for high2density culture.Journal ofMarine Biotechnology,1993,1 (1) :21~25[7] Rabinowitch EI.Photosynthesis and Related Processes.New York : Interscience,1945,1330[8] Seckbach J,Baker FA.Algae thrive under pure CO2.Nature,1970,227 :744~745[9] Sakai N,Sakamoto Y,Kishimoto N,et al.Chlorella strains from hot springs tolerant to high temperature and high CO2.Energy Convers.Mgmt.,1995,36 :693~696[10] Maeda K,Owada M,Kimura N,et al.CO2 fixation from the flue gas on coal2fired thermal power plant by microalgae.Energy Convers.Mgmt.,1995,36 : 717~720[11] Chang EH,Yang SS.Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide.Bot.Bull.Acd.Sin.,2003,44:43~52[12] Hanagata N,Takeuchi T,Fukuju Y,et al.Tolerance of microalgae to high CO2 and high temperature.Phytochemistry,1992,31 :3345~3348[13] Yamada H,Ohkuni N,Kajiwara S,et al.CO22removal characteristics of Anacystis nidulans R2 in air2lift bioreactors.Energy Convers.Mgmt.,1995,36 :349~352[14] Kurano N,Ikemoto H,Miyashita H,et al.Fixation and utilization of carbon dioxide by microalgal photosynthesis.Energy Convers.Mgmt.,1995,36 :689~692[15] Laws EA,Berning JL.Photosynthetic efficiency optimization studies with the macroalga Gracilaria tikvihae :implications for CO2 emission controlfrom power plants.Bioresource Technology,1991,37 :25~35[16] Lee YK,Tay HS.High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture.Journal ofApplied Phycology,1991,3 :95~101[17] Sasaki T,Kurano N,Miyachi S.Cloning and characterization of high2CO22specific cDNAs from a marine microalga,Chlorococcum littorale,andeffect of CO2 concentration and iron deficiency on the gene expression.Plant Cell Physiology,1998,39 (2) :131~138[18] Gilmour DJ,Hipkins MF,Webber AN,et al.The effect of ionic stress on photosynthesis in Dunaliella tertiolecta.Chlorophyll fluorescence kineticsand spectral characteristics.Planta,1985,163 :250~256[19] Pesheva I,Kodama M,DionisiO2Sese ML,et al.Changes in photosynthetic characteristics induced by transferring air2grow cells of Chlorococcumlittorale to CO2 conditions.Plant Cell Physiol.,1994,35 :379~387[20] Iwasaki I,Kurano N,Miyachi S.Effects of high2CO2 on photosystem Ⅱin a green alga,Chlorococcum littorale,which has a tolerance to high CO2.Photochem.Photobiol,1996,36 :327~332[21] Iwasaki I,Hu Q,Kurano N,et al.Effect of extremely high2CO2 stress on energy distribution between photosystem Ⅰand photosystem Ⅱin a“high2CO2”tolerant green alga,Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris.Photochem.Photobiol,1998,44:184~190[22] Satoh A,Kurano N,Miyachi S.Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO2.Photosynthesis Research,2001,68 :215~224[23] Allen JF.Protein phosphorylation in regulation of photosynthesis.Biochim.Biophys.Acta,1992,1098 :275~335[24] Schreiber U,Endo T,Mi H,et al.Quenching analysis of chlorophyll fluorescence by the saturation pulse method : Particular aspects relating to thestudy of eukaryotic algae and cyanobacteria.Plant Cell Physiol.,1995,36 :873~882[25] Endo T,Asada K.Dark induction of the non2photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii.PlantCell Physiol.,1996,37 :551~555[26] Pulles MPJ,Gorkom HJV,Verschoor GAM.Primary reactions of photosystem II at low pH.Biochim.Biophys.Acta,1976,440 : 98~106[27] Sasaki T,Pronina NA,Maeshima M,et al.Development of vacules and vacuolar H+2ATPase activity under extremely high CO2 conditions inChlorococcum littorale cells.Plant boil.,1999,1 :68~75[28] Beuf L,Kurano N,Miyachi S.Rubisco activase transcript (rca) abundance increases when the marine unicellular green alga Chlorococcum littoraleis grown under high2CO2 stress.Plant Molecular Biology,1999,41 :627~635[29] Yokota A,Canvin DT.Changes of ribulose bisphosphate carboxylasePoxygenase content,ribulose bisphosphate concentration and photosyntheticactivity during adaptation of high2CO2 grown cells to low CO2 conditions in Chlorella pyrenoidosa.Plant Physiol.,1986,80:341~345[30] Roesler KR,Ogren WL.Primary structure of Chlamydomonas reinhardtii ribulose 1,52bisphosphate carboxylasePoxygenase activase and evidence fora single polypeptide.Plant Physiol.,1990,94 :1837~1841[31] Orkin SH.Molecular genetics of chronic granulomatous disease.Annu.Rev.Immunol.,1989,7 :277~307A[32] Roman DG,Dancis A,Anderson GJ,et al.The fission yeast ferric reductase gene frp1 + is required for ferric iron uptake and encodes a protein thatis homologous to the gp912phox subunit of the human NADPH phagocyte oxidoreductase.Mol.Cell.Biol.,1993,13 :4342~4350[33] Rothschild LJ,Mancinelli RL.Life in extreme environments.Nature,2001,409 (22) : 1092~1101[34] Usui N,Ikenouchi M.The biological CO2 fixation and utilization project,RITE (1) : highly2effective photobioreactor system.Energy Conserv.Mgmt.,1996,38 :S487~492[35] Sheehan J,Dunahay T,Benemann J,et al.A Look Back at the U.S.Department of Energy’s Aquatic Species Program2Biodiesel from Algae.NERLPTP2580224190.Golden,CO:National Renewable Energy Laboratory,80401,1998[36] Burlew J.Algae Culture : From Laboratory to Pilot Plant.Washington D.C:Carnegie Institute,1953[37] Pulz O.Photobioreactor : production systems for phototrophic microorganisms.Appl.Microbiol.Biotechnol.,2001,57 :287~293 |