[1] MacQueen J. Some methods for classification and analysis of multivariate observations //LeCam L, Neyman J, eds. Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics and Probability. Berkeley: University of California Press, 1967:281-297.
[2] Leonard Kaufman, Peter J Rousseeuw. Finding groups in data: An introduction to cluster analysis [M]. New York: Wiley Press, 2005.
[3] Tan P N, Steinbach M, Kumar V著, 范 明,范宏建,等译. 数据挖掘导论(Introduction to Data Mining).北京: 人民邮电出版社, 2006.
[4] Ester M, Kriegel H P,Sander J. A density-based algorithm for discovering clusters in large spatial databases with noise //Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996:226-231.
[5] Ankerst M,Breunig M M, Kriegel H P. OPTICS: ordering points to identify the clustering structure //Alex Delis, Christos Faloutsos,Shahram Ghandeharizadeh eds. Proceedings of the ACM SIGMOD'99 Int Conf on Management of Data. Philadelphia Pennsylvania: ACM Press, 1999: 49-60.
[6] Hinneburg A,Keim D A. An efficient approach to clustering in large multimedia databases with noise //Rakesh Agrawal,Paul Stolorz,eds. Proceedings of the 4th Int Conf on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998: 58-65.
[7] Feng P J,Ge L D. Adaptive DBSCAN-based algorithm for constellation reconstruction and modulation identification //Keyun Tang, Dayong Liu,eds. Proceedings of Radio Science Conference 2004. Beijing: Pub House of Electronics Industry, 2004: 177-180.
[8] Halkidi M, Vazirgiannis M. Clustering validity assessment: finding the optimal partitioning of a data set //Nick Cercone, Tsau Young Lin,Xindong Wu eds. Proceedings of the 2001 IEEE International Conference on Data Mining. California: IEEE Computer Society, 2001: 187-194.
[9] Yue S H, Li P,Guo J D, et al. A statistical information-based clustering approach in distance space [J]. Journal of Zhejiang University Science, 2005, 6A(1): 71-78.
[10] Xu X, Ester M,Kriegel H P, et al. A distribution-based clustering algorithm for mining in large spatial databases //Philip S Yu,eds. Proceedings of the 14th international conference on data engineering (ICDE'98). Orlando: IEEE Computer Society Press, 1998: 324-331.
[11] Lin C Y, Chang C C, Lin C C. A new density-based scheme for clustering based on genetic algorithm [J]. Fundamenta Informaticae, 2005, 68(4): 315-331.
[12] Cai Y K, Xie K Q, Ma X J. An improved DBSCAN algorithm which is insensitive to input parameters [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2004, 40(3): 480-486 (in Chinese). 蔡颖琨, 谢昆青, 马修军. 屏蔽了输入参数敏感性的DBSCAN改进算法 [J]. 北京大学学报:自然科学版, 2004, 40(3): 480-486.
[13] Su Z, Ma S P, Yang Q, et al. Document clustering based on web-log mining [J]. Journal of Software, 2002, 13(1): 99-104(in Chinese). 苏 中, 马少平, 杨 强,等. 基于Web-Log Mining的Web文档聚类 [J]. 软件学报, 2002, 13(1): 99-104.
[14] 吴梅村编著. 数理统计学基本原理和方法 [M]. 成都: 西南财经大学出版社, 2006.
[15] Steinbach M, Karypis G, Kumar V. A comparison of document clustering techniques:technical report .Minnesota: University of Minnesota-Computer Science and Engineering, 2000.
|