[1] 童庆禧. 高光谱遥感[M]. 北京:高等教育出版社, 2006:47-65.
[2] 万余庆. 高光谱遥感应用研究[M]. 北京:科学出版社, 2006:35-98.
[3] Ma X L, Ren Z Y, Wang Y L. Research on hyperspectral remote sensing image classification based on SAM[J].System Sciences & Comprehensive Studies in Agriculture, 2009, 25(2):204-208.
[4] Shafri H Z M, Suhaili A, Mansor S. The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis[J]. Journal of Computer Science, 2007, 3(6):419-423.
[5] Gao L, Li J, Khodadadzadeh M, et al. Subspace-based support vector machines for hyperspectral image classifica-tion[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(2):349-353.
[6] Hu W, Huang Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015(2):1-12.
[7] Han J, Kamber M. Data mining concepts and technique[M]. San Fransisco:Morgan Kaufmann press, 2001:23-106.
[8] Macqueen J. Some methods for classification and analysis of MultiVariate observations[C]//Proc of Berkeley Symposium on Mathematical Statistic-sand Probability, 1967:281-297.
[9] Wagstaff K, Cardie C, Rogers S, et al. Constrained K-means clustering with background knowledge[C]//Eighteenth International Conference on Machine Learning. San Francisco:Morgan Kaufmann Press, 2001:577-584.
[10] Comaniciu D, Meer P. Mean shift:a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(5):603-619.
[11] Ball G H, Hall D J. ISODATA, a novel method of data analysis and pattern classification[R]. Stanford research inst Menlo Park CA, 1965.
[12] Ester M, Kriegel H P, Xu X. A densitybased algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]//International Conference on Knowledge Discovery and Data Mining. Portland:AAAI Press, 1996:226-231.
[13] 蔡晓妍, 戴冠中, 杨黎斌. 谱聚类算法综述[J]. 计算机科学, 2008, 35(7):14-18.
[14] Ng A Y, Jordan M I, Weiss Y. On spectral clustering:analysis and an algorithm[J]. Proc Nips, 2001, 14:849-856.
[15] Zelnik-Manor L. Self-tuning spectral clustering[J]. Advances in Neural Information Processing Systems, 2004, 17:1601-1608.
[16] Hagen L, Kahng A B. New spectral methods for ratio cut partitioning and clustering[J].IEEE Transactions on Com-puter-Aided Design of Integrated Circuits and Systems, 1992, 11(9):1074-1085.
[17] Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4):433-459.
[18] Green A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience & Remote Sensing, 1988, 26(1):65-74.
[19] Chen L J, Zou X J, Chen B B, et al. An improved FastICA algorithm and its application in image feature extraction[J]. Advanced Materials Research, 2011, 204-210:1485-1489.
[20] Pudn.com.Clustering datasets:China[EB/OL].(2015-04-18)[2018-01-03]. http://www.pudn.com/Download/item/id/2741142.html.
[21] Tsaparas P, Mannila H, Gionis A. Clustering aggregation[J]. Acm Transactions on Knowledge Discovery from Data, 2007, 1(1):4.
[22] 李翔. 高光谱影像的聚类分析及应用[D]. 北京:北京交通大学, 2015. |