[1] MacQueen J. Some methods for classification and analysis of multivariate observations //LeCam L M,Neyman J,eds. Proc of Fifth Berkeley Symposium on Math. Stat and Prob: University of California Press, 1967:281-297.
[2] Tan P N,Steinbach M,等著. 范 明,范宏建,等译.数据挖掘导论(Introduction to Data Mining) [M]. 北京:人民邮电出版社, 2006.
[3] Ester M, Kriegel H P, Sander J. A density-based algorithm for discovering clusters in large spatial databases with noise //Usama M Fayyad, Padhraic Smyth, Gregory Piatetsky-Shapiro,eds. Proc of 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). Portland: ACM Press, 1996:226-231.
[4] Ankerst M, Breunig M M, et al. OPTICS: ordering points to identify the clustering structure //Alex Delis, Christos Faloutsos, Shahram Ghandeharizadeh, eds. Proc ACM SIGMOD'99 Int Conf on Management of Data. Philadelphia Pennsylvania: ACM Press, 1999:49-60.
[5] Agrawal R, Gehrke J, Gunopulos D, et al. Automatic subspace clustering of high dimensional data for data mining applications //Laura Haas,Ashutosh Tiwary,eds. Proc of 1998 ACM-SIGMOD Intl Conf on Management of Data. Seattle, Washington: ACM Press, 1998:94-105.
[6] Katsavounidis I, Kuo C, Zhang Z. A new initialization technique for generalized lloyd iteration [J]. IEEE Signal Processing Letters, 1994, 1(10): 144-146.
[7] Tou J T,Gonzalez R C. Pattern recognition principles [M].Dyersburg, TN, USA: Addison-Wesley, 1975.
[8] Christian Mauceri, Diem Ho. Clustering by kernel density [J]. Computational Economics, 2007, 29(2): 199-212.
[9] Liu N, Zhang B Y, Yan J, et al. Learning similarity measures in the non-orthogonal space //Grossman D, Gravano L, Zhai C, Herzog O, Evans D, eds. Proc of the 13th Conf on Information and Knowledge Management (CIKM 2004). New York: ACM Press, 2004:334-341.
[10] Jarvis R A, Patrick E A. Clustering using a similarity measure based on shared nearest neighbors [J]. IEEE Transactions on Computers, 1973, C-22(11): 1025-1034.
[11] 王世儒.计算方法 [M]. 西安: 西安电子科技大学出版社,1999.
[12] Steinbach M, Karypis G, et al. A comparison of document clustering techniques. Computer Science and Engineering Technical Report, Report No. 00-034 . Minnesota USA: University of Minnesota, 2000.
|