[1] Cory S, Huang D C, Adams J M. The Bcl-2 family: roles in cell survival and oncogenesis[J]. Oncogene, 2003, 22: 8590-8607. [2] Adams J M, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy[J]. Oncogene, 2007, 26: 1324-1337. [3] Oltvai Z N, Milliman C L, Korsmeyer S J. Bcl-2 heterodimerizes in-vivo with a conserved homolog, bax, that accelerates programmed cell-death[J]. Cell, 1993, 74: 609-619. [4] Adams J M, Cory S. The Bcl-2 protein family: arbiters of cell survival[J]. Science, 1998, 281: 1322-1326. [5] Willis S N, Chen L, Dewson G, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins[J]. Genes Dev, 2005, 19: 1294-1305. [6] Kozopas K M, Yang T, Buchan H L, et al. MCL-1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL-2[J]. Proc Nat Acad Sci USA,1993,90: 3516-3520. [7] Fleischer B, Schulze-Bergkamen H, Schuchmann M, et al. Mcl-1 is an anti-apoptotic factor for human hepatocellular carcinoma[J]. Int J Oncol, 2006, 28: 25-32. [8] Zhang B, Gojo I, Fenton R G. Myeloid cell factor-1 is a critical survival factor for multiple myeloma[J]. Blood, 2002, 99: 1885-1893. [9] Konopleva M, Contractor R, Tsao T, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia[J]. Cancer Cell, 2006, 10: 375-388. [10] Boisvert-Adamo K, Longmate W, Abel E V, et al. Mcl-1 is required for melanoma cell resistance to anoikis[J]. Mol Cancer Res, 2009, 7: 549-556. [11] Ding Q Q, He X, Xia W, et al. Myeloid cell Leukemia-1 inversely correlates with glycogen synthase kinase-3β activity and associates with poor prognosis in human breast cancer[J]. Cancer Res, 2007, 67:4564-4571. [12] Moulding D A, Giles R V, Spiller D G, et al. Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells[J]. Blood, 2000, 96: 1756-1763. [13] Akgul C. Mcl-1 is a potential therapeutic target in multiple types of cancer[J]. Cell Mol Life Sci, 2009, 66: 1326-1336. [14] Sieghart W, Losert D, Strommer S, et al. Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy[J]. J Hepatol, 2006, 44: 151-157. [15] Wacheck V, Cejka D, Sieghart W, et al. Mcl-1 is a relevant molecular target for antisense oligonucleotide strategies in gastric cancer cells[J]. Cancer Biol Ther, 2006, 5: 1348-1354. [16] Stewart M L, Fire E, Keating A E, et al. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer[J]. Nature Chemical Biology, 2010, 6: 595-601. [17] Case D A, Darden T A, Cheatham III T E, et al. AMBER[M]. 10th ed. University of California: San Francisco, 2008. [18] Cieplak P, Cornell W D, Bayly C. Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA, and proteins[J]. J Comput Chem, 1995, 16: 1357-1377. [19] Jorgensen W L, Chandrasekhar J, Madura J, et al. Comparison of simple potential functions for simulating liquid water[J]. J Chem Phys, 1983, 79: 926-935. [20] Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems[J]. J Chem Phys, 1993, 98: 10089-10092. [21] Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes[J]. J Comput Phys, 1977, 23: 327-341. [22] Swanson J M, Henchman R H, McCammon J A. Revisiting free energy calculations: a theoretical connection to MM/PBSA and sirect calculation of the association free energy[J]. Biophys J, 2004, 86: 67-74. [23] Xu Y, Wang R. A computational analysis of the binding affinities of FKBP12 inhibitors using the MM-PB/SA method[J]. Proteins, 2006, 64: 1058-1068. [24] Luo C, Xu L, Zheng S, et al. Computational analysis of molecular basis of 1:1 interactions of NRG-1beta wild-type and variants with ErbB3 and ErbB4[J]. Proteins, 2005, 59: 742-756. [25] Kuhn B, Gerber P, Schulz-Gasch T, et al. Validation and use of the MM-PBSA approach for drug discovery[J]. J Med Chem, 2005, 48: 4040-4048. [26] Kollman P A, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models[J]. Acc Chem Res, 2000, 33: 889-897. [27] Molina J M, Hill A. Darunavir (TMC114): a new HIV-1 protease inhibitor[J]. Expert Opin Pharmacother, 2007, 8: 1951-1964. [28] Kuhn B, Gerber P, Schulz-Gasch T, et al. Validation and use of the MM-PBSA approach for drug discovery[J]. J Med Chem, 2005, 48: 4040-4048. [29] Li T, Froeyen M, Herdewijn P. Computational alanine scanning and free energy decomposition for E coli type Ⅰsignal peptidase with lipopeptide inhibitor complex[J]. J Mol Graphics Modell, 2008, 26: 813-823. [30] Tsui V, Case D A. Theory and applications of the generalized Born solvation model in macromolecular Simulations[J]. Biopolymers, 2000, 56: 275-291. [31] Weiser J, Shenkin P S, Still W C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO)[J]. J Comput Chem, 1999, 20: 217-230. [32] Gohlke H, Kiel C, Case D A. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes[J]. J Mol Biol, 2003, 330: 891-913. [33] Kottalam J, Case D A. Langvin modes of macromolecules: applications to Crambin and DNA hexamers[J]. Biopolymers, 1990, 29: 1409-1421. [34] Picksley S M, Vojtesek B, Sparks A, et al. Immunochemical analysis of the interaction of p53 using synthetic peptides[J]. Oncogene, 1994, 9: 2523-2529. [35] Wang W, Kollman P A. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model[J]. J Mol Biol, 2000, 303: 567-582. |