[1] Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865): 813-820. [2] Gao L H, Liu W P, Wang B L, et al. Effects of bis([alpha]-furancarboxylato)oxovanadium(IV) on non-diabetic and streptozotocin-diabetic rats[J]. Clin Chim Acta, 2006, 368: 173-178. [3] Taskinen M R. Diabetic dyslipidaemia: from basic research to clinical practice[J]. Diabetologia, 2003, 46(6): 733-749. [4] McGarry J D. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes[J].Diabetes,2002,51(1):7-18. [5] Korbecki J, Baranowska B I, Gutowska I, et al. Biochemical and medical importance of vanadium compounds[J]. Acta Biochimica Polonica, 2012, 59(2): 195-200. [6] Shechter Y, Goldwaser I, Mironchik M, et al. Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes[J]. Coordination Chemistry Reviews, 2003, 237(1/2): 3-11. [7] Xu M Z, Zhang A Z, Li X O, et al. Effects of vanadate on the activities of mice glucokinase and hexokinase[J]. Journal of Zhejiang University:Natural Science, 2004, 5(10): 1 245-1 248. [8] Zhao Y B, Ye L H, Liu H X, et al. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress[J]. Journal of Inorganic Biochemistry, 2010, 104(4): 371-378. [9] Lu B, Ennis D, Lai R, et al. Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4)[J]. J Biol Chem, 2001, 276(38): 35 589-35 598. [10] Doege H, Stahl A. Protein-mediated fatty acid uptake: Novel insights from in vivo models[J]. Physiology, 2006, 21: 259-268. [11] Peeters A, Swinnen J V, Van V P, et al. Hepatosteatosis in peroxisome deficient liver despite increased beta-oxidation capacity and impaired lipogenesis[J]. Biochimie, 2011, 93(10): 1828-1838. [12] Bellanti F, Romano A D, Tamborra R, et al. Alteration of fatty acid beta-oxidation observed in severe steatosis depends on CPT1 Impairment and change in mitochondrial membrane lipid composition[J].Free Radical Research,2009,43:48. [13] Ferdinandusse S, Meissner T, Wanders R J, et al. Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of leukotrienes[J]. Biochemical and Biophysical Research Communications, 2002, 293(1): 269-273. [14] Wu Q W, Ortegon A M, Tsang B, et al. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity[J]. Molecular and Cellular Biology, 2006, 26(9): 3 455-3 467. [15] Chen L L, Zhang H H, Zheng J, et al. Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial beta-oxidation[J]. Metabolism-Clinical and Experimental, 2011, 60(11): 1 598-1 609. [16] Lim E L, Hollingsworth K G, Smith F E, et al. Inhibition of lipolysis in Type 2 diabetes normalizes glucose disposal without change in muscle glycogen synthesis rates[J]. Clinical Science, 2011, 121(3/4): 169-177. [17] Zhang L N, Morgan D G, Clapham J C, et al. Factors predicting nongenetic variability in body weight gain induced by a high-fat diet in inbred C57BL/6J mice[J]. Obesity, 2012, 20(6): 1 179-1 188. [18] Winzell M S, Ahren B. The high-fat diet-fed mouse - A model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes[J]. Diabetes, 2004, 53: S215-S219. [19] Thounaojam M C, Jadeja R N, Ansarullah, et al. Prevention of high fat diet induced insulin resistance in C57BL/6J mice by sida rhomboidea ROXB extract[J]. Journal of Health Science, 2010, 56(1): 92-98. [20] Heyliger C E, Tahiliani A G, McNeill J H. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats[J]. Science, 1985, 227(4693): 1 474-1 477. [21] Stingl K A, Weiss K M, Tsogoeva S B. Asymmetric vanadium- and iron-catalyzed oxidations: new mild (R)-modafinil synthesis and formation of epoxides using aqueous H2O2 as a terminal oxidant[J]. Tetrahedron, 2012, 68(40): 8 493-8 501. [22] Smee J J, Epps J A, Ooms K, et al. Chloro-substituted dipicolinate vanadium complexes: Synthesis, solution, solid-state, and insulin-enhancing properties[J]. Journal of Inorganic Biochemistry, 2009, 103(4): 575-584. [23] Li M, Ding W J, Smee J J, et al. Anti-diabetic effects of vanadium(III, IV, V)-chlorodipicolinate complexes in streptozotocin-induced diabetic rats[J]. Biometals, 2009, 22(6): 895-905. [24] Saha T K, Yoshikawa Y, Sakurai H. Improvement of hyperglycaemia and metabolic syndromes in type 2 diabetic KKA(y) mice by oral treatment with meso-tetrakis(4-sulfonatophenyl)porphyrinato oxovanadium(IV)(4-) complex[J]. Journal of Pharmacy and Pharmacology, 2007, 59(3): 437-444. [25] Gao L H, Niu Y F, Liu W P, et al. The antilipolytic action of bis(alpha-furancarboxylato)oxovanadium(IV) in adipocytes[J]. Clinica Chimica Acta, 2008, 388(1/2): 89-94. [26] Adachi Y, Yoshikawa Y, Yoshida J, et al. Improvement of diabetes, obesity and hypertension in type 2 diabetic KKA(y) mice by bis(allixinato)oxovanadium(IV) complex[J]. Biochemical and Biophysical Research Communications, 2006, 345(3): 945-950. [27] Tsuduki T, Nakamura Y, Honma T, et al. Intake of 1-Deoxynojirimycin suppresses lipid accumulation through activation of the beta-oxidation system in rat liver[J]. Journal of Agricultural and Food Chemistry, 2009, 57(22): 11 024-11 029. [28] Sebastian D, Guitart M, Garcia M C, et al. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells[J]. Journal of Lipid Research, 2009, 50(9): 1 789-1 799. [29] 林苗, 林丽香, 陈刚, 等. Ⅱ-型糖尿病合并脂肪肝大鼠肝脏基因表达谱[J]. 中华内分泌代谢杂志, 2006(1): 73-74. [30] Kazantzis M, Stahl A. Fatty acid transport proteins, implications in physiology and disease[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2012, 1821(5): 852-857. |