[1] Gambis D, Luzum B. Earth rotation monitoring, UT1 determination and prediction [J]. Metrologia, 2011, 48(4): 165-170.[2] Tomasz N, Kosek W. Prediction of UT1-UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods [J]. Journal of Geodesy, 2008, 82(2): 83-92.[3] Kosek W, McCarthy D D, Luzum B J. Possible improvement of Earth orientation forecast using autocovariance prediction procedures[J]. Journal of Geodesy, 1998, 72(4):189-199.[4] Gross R S, Eubanks T M, Steppe J A, et al. A Kalman filter-based approach to combining independent Earth-orientation series[J]. Journal of Geodesy, 1998, 72(4):215-235.[5] Schuh H, Ulrich M, Egger D, et al. Prediction of Earth orientation parameters by artificial neural networks[J]. Journal of Geodesy, 2002, 76(5):247-258.[6] 张晓红, 王琪洁, 朱建军, 等. 广义回归神经网络在日长变化预报中的应用[J]. 天文学报,2011, 52(4):322-331.[7] Wang Q J, Du Y N, Liu J. Introducing atmospheric angular momentum into prediction of length of day change by generalized regression neural network model[J]. Journal of Central South University, 2014, 21:1396-1401.[8] Akyilmaz O, Kutterer H. Prediction of Earth rotation parameters by fuzzy inference systems[J]. Journal of Geodesy, 2004, 78(1/2):82-93.[9] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1-3):489-501.[10] Huang G B, Zhu H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification[J]. Iee Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2012, 42(2):513-529.[11] Sun Z L, Choi T M. Sales forecasting using extreme learning machine with applications in fashion retailing[J]. Decision Support Systems, 2008, 46(1):411-419.[12] Gerard P, Brain L. IERS Conventions (2010)[S]. Germany:Verlag des Bundesamts für Kartographie und Geodasie, 2011:123-131.[13] 崔杰. 一种新的灰色相似关联度及其应用[J]. 统计与决策, 2008, 20:14-16.[14] Kalarus M, Schuh H, Kosek W, et al. Achievements of the Earth orientation parameters prediction comparison campaign[J]. Journal of Geodesy, 2010, 84(10):587-596. |