[1] Wei S H, Ramakrishna V, Kanade T, et al. Convolutional pose machines[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:4724-4732. [2] Teo C L, Fermüller C, Aloimonos Y. Detection and segmentation of 2D curved reflection symmetric structures[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015:1644-1652. [3] Zhang Z, Shen W, Yao C, et al. Symmetry-based text line detection in natural scenes[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015:2558-2567. [4] Lee T, Fidler S, Dickinson S. Learning to combine mid-level cues for object proposal generation[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015:1680-1688. [5] Lam L, Lee S W, Suen C Y. Thinning methodologies-a comprehensive survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(9):869-885. [6] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [7] Xie S N, Tu Z W. Holistically-nested edge detection[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015:1395-1403. [8] Tsogkas S, Kokkinos I. Learning-based symmetry detection in natural images[M]//Computer Vision-ECCV 2012. Berlin, Heidelberg:Springer, 2012:41-54. [9] Ke W, Chen J, Jiao J B, et al. SRN:side-output residual network for object symmetry detection in the wild[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:302-310. [10] Liu C, Ke W, Qin F, et al. Linear span network for object skeleton detection[M]//Computer Vision-ECCV 2018. Cham:Springer International Publishing, 2018:136-151. [11] Hou Q B, Cheng M M, Hu X W, et al. Deeply supervised salient object detection with short connections[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4):815-828. [12] Wang Y K, Xu Y C, Tsogkas S, et al. DeepFlux for skeletons in the wild[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:5282-5291. [13] Qiao Y, Tian Y J, Liu Y, et al. Genetic feature fusion for object skeleton detection[J]. Security and Communication Networks, 2021, 2021:1-9. [14] Zhao K, Shen W, Gao S H, et al. Hi-fi:hierarchical feature integration for skeleton detection[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. July 13-19, 2018. Stockholm, Sweden. California:International Joint Conferences on Artificial Intelligence Organization, 2018:1191-1197. [15] Shen W, Zhao K, Jiang Y, et al. Object skeleton extraction in natural images by fusing scale-associated deep side outputs[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:222-230. [16] Blake R, Logothetis N K. Visual competition[J]. Nature Reviews Neuroscience, 2002, 3(1):13-21. [17] Wang Y L, Lv K C, Huang R, et al. Glance and focus:a dynamic approach to reducing spatial redundancy in image classification[EB/OL]. arXiv:2010.05300. (2020-10-11)[2021-06-01]. https://arxiv.org/abs/2010.05300. [18] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. arXiv:1409.1556. (2015-04-10)[2021-06-01]. https://arxiv.org/abs/1409.1556. [19] Shen W, Bai X, Hu Z H, et al. Multiple instance subspace learning via partial random projection tree for local reflection symmetry in natural images[J]. Pattern Recognition, 2016, 52:306-316. [20] Shen W, Zhao K, Jiang Y, et al. DeepSkeleton:learning multi-task scale-associated deep side outputs for object skeleton extraction in natural images[J]. IEEE Transactions on Image Processing, 2017, 26(11):5298-5311. [21] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO:common objects in context[M]//Computer Vision-ECCV 2014. Cham:Springer International Publishing, 2014:740-755. [22] Everingham M, Gool L, Williams C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [23] Deng J, Dong W, Socher R, et al. ImageNet:a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2009. Miami, FL, USA. IEEE, 2009:248-255. [24] Hubara I, Courbariaux M, Soudry D, et al. Quantized neural networks:training neural networks with low precision weights and activations[EB/OL]. arXiv:1609.07061. (2016-09-22)[2021-06-01]. https://arxiv.org/abs/1609.07061. [25] He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015:1026-1034. |