[1] 朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局[J]. 植物生态学报, 2004, 28(4): 491-498. DOI:10.17521/cjpe.2004.0067. [2] 欧阳志云, 王如松, 赵景柱. 生态系统服务功能及其生态经济价值评价[J]. 应用生态学报, 1999, 10(5): 635-640. DOI:10.13287/j.1001-9332.1999.0166. [3] 李博主编; 内蒙古草场资源遥感应用考察队伊克昭盟分队编著. 内蒙古鄂尔多斯高原自然资源与环境研究[M]. 北京: 科学出版社, 1990. [4] 满卫东, 刘明月, 王宗明, 等. 1990—2015年东北地区草地变化遥感监测研究[J]. 中国环境科学, 2020, 40(5): 2246-2253. DOI:10.19674/j.cnki.issn1000-6923.2020.0257. [5] Yan P J, Di L, Zhou J P, et al. Spatio-temporal changes of vegetation coverage in Jingchuan County based on an analysis of TM imagery[J]. IOP Conference Series: Earth and Environmental Science, 2019, 227:062036. DOI:10.1088/1755-1315/227/6/062036. [6] 杨正兰, 张廷斌, 易桂花, 等. 气候变化背景下横断山区植被叶面积指数时空变化特征分析[J]. 长江流域资源与环境, 2021, 30(11): 2670-2681. DOI:10.11870/cjlyzyyhj202111010. [7] 黄玫, 季劲钧. 中国区域植被叶面积指数时空分布:机理模型模拟与遥感反演比较[J]. 生态学报, 2010, 30(11): 3057-3064. [8] Aragão L E O C, Shimabukuro Y E, Espírito Santo F D B, et al. Landscape pattern and spatial variability of leaf area index in Eastern Amazonia[J]. Forest Ecology and Management, 2005, 211(3): 240-256. DOI:10.1016/j.foreco.2005.02.062. [9] 韩思淇, 麻泽龙, 庄文化, 等. 2000—2018年黄河源植被叶面积指数时空变化特征[J]. 灌溉排水学报, 2019, 38(12): 57-62. DOI:10.13522/j.cnki.ggps.2019151. [10] Yin Y H, Ma D Y, Wu S H, et al. Nonlinear variations of forest leaf area index over China during 1982-2010 based on EEMD method[J]. International Journal of Biometeorology, 2017, 61(6): 977-988. DOI:10.1007/s00484-016-1277-x. [11] 任宏昌, 史学丽, 张祖强. 2003—2009年中国地区叶面积指数变化特征分析[J].气象科学, 2014, 34(2): 171-178. DOI:10.3969/2013jms.0055. [12] Fang H L, Baret F, Plummer S, et al. An overview of global leaf area index (LAI): methods, products, validation, and applications[J]. Reviews of Geophysics, 2019, 57(3): 739-799. DOI:10.1029/2018RG000608. [13] Baniya B, Tang Q H, Koirala M, et al. Growing season vegetation dynamics based on NDVI and the driving forces in Nepal during 1982-2015[J]. Forestry: Journal of Institute of Forestry, Nepal, 2020, 17: 1-22. DOI:10.3126/forestry.v17i0.33619. [14] 胡琦. 内蒙古地区多时间尺度气候变化及草地叶面积动态响应研究[D]. 北京: 中国农业大学, 2016. [15] Yin G, Hu Z Y, Chen X, et al. Vegetation dynamics and its response to climate change in Central Asia[J]. Journal of Arid Land, 2016, 8(3): 375-388. DOI:10.1007/s40333-016-0043-6. [16] 周伟, 王倩, 章超斌, 等. 黑河中上游草地NDVI时空变化规律及其对气候因子的响应分析[J]. 草业学报, 2013, 22(1): 138-147. [17] Gottfried M, Pauli H, Futschik A, et al. Continent-wide response of mountain vegetation to climate change[J]. Nature Climate Change, 2012, 2(2): 111-115. DOI:10.1038/nclimate1329. [18] Zhang G P, Yan J J, Zhu X T, et al. Spatio-temporal variation in grassland degradation and its main drivers, based on biomass: case study in the Altay Prefecture, China[J]. Global Ecology and Conservation, 2019, 20: e00723. DOI:10.1016/j.gecco.2019.e00723. [19] 康悦, 李振朝, 田辉, 等. 黄河源区植被变化趋势及其对气候变化的响应过程研究[J]. 气候与环境研究, 2011, 16(4): 505-512. DOI:10.3878/j.issn.1006-9585.2011.04.11. [20] Cui L L, Shi J. Temporal and spatial response of vegetation NDVI to temperature and precipitation in Eastern China[J]. Journal of Geographical Sciences, 2010,20(2): 163-176. DOI:10.1007/s11442-010-0163-4. [21] Nemani R R, Running S W, Pielke R A, et al. Global vegetation cover changes from coarse resolution satellite data[J]. Journal of Geophysical Research Atmospheres, 1996, 101(D3): 7157-7162. DOI:10.1029/95JD02138. [22] 张福春. 气候变化对中国木本植物物候的可能影响[J]. 地理学报, 1995, 50(5): 402-410. DOI:10.11821/xb199505003. [23] Zhang X Z, Tang Q H. Response of simulated surface air temperature to the interannual variability of leaf area index in eastern China[J]. Advances in Meteorology, 2013, 2013: 817870. DOI:10.1155/2013/817870. [24] Kasoro F R, Yan L, Zhang W, et al. Spatial and temporal changes of vegetation cover in China based on MODIS NDVI[J]. Applied Ecology and Environmental Research, 2021, 19(2): 1371-1390. DOI:10.15666/aeer/1902_13711390. [25] 张新时主编; 中国科学院中国植被图编辑委员会编纂. 中华人民共和国植被图1∶1 000 000[M]. 北京: 地质出版社, 2007. [26] Xiao Z Q, Liang S L, Wang J D, et al. Use of general regression neural networks for generating the GLASS Leaf Area Index Product from Time-Series MODIS Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 209-223. DOI:10.1109/TGRS.2013.2237780. [27] Xiao Z Q, Liang S L, Wang J D, et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5301-5318. DOI:10.1109/TGRS.2016.2560522. [28] 乐荣武, 张娜, 王晶杰, 等. 2000—2019年内蒙古草地地上生物量的时空变化特征[J]. 中国科学院大学学报, 2022, 39(1): 21-33. DOI:10.7523/j.ucas.2020.0047. [29] Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946. DOI:10.5194/essd-11-1931-2019. [30] Theil H. A rank-invariant method of linear and polynomial regression analysis[M]//Advanced Studies in Theoretical and Applied Econometrics. Dordrecht: Springer Netherlands, 1992: 345-381. DOI:10.1007/978-94-011-2546-8_20. [31] Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389. DOI: 10.1080/01621459.1968.10480934. [32] 李晓兵, 陈云浩, 张云霞, 等. 气候变化对中国北方荒漠草原植被的影响[J]. 地球科学进展, 2002, 17(2): 254-261. DOI:10.3321/j.issn:1001-8166.2002.02.015. [33] 王惠玲, 刁华杰, 崔乐乐, 等. 北方农牧交错带典型草地土壤呼吸及其组分对刈割强度的响应[J]. 草地学报, 2020, 28(5): 1403-1411. DOI:10.11733/j.issn.1007-0435.2020.05.027. [34] 乔治. 东北林草交错区土地利用对生态脆弱性的影响评价[D]. 济南:山东师范大学, 2011. [35] 臧淑英, 黄樨, 郑树峰. 资源型城市土地利用变化的景观过程响应:以黑龙江省大庆市为例[J]. 生态学报, 2005, 25(7): 1699-1706. DOI:10.3321/j.issn:1000-0933.2005.07.024. [36] 杜国明, 李昀, 于凤荣, 等. 基于遥感的2000—2009年三江平原北部耕地变化特征分析[J]. 农业工程学报, 2012, 28(1): 225-229. DOI:10.3969/j.issn.1002-6819.2012.01.040. [37] 郭健. 新疆塔里木河流域平原区土地利用覆盖变化及其对生态环境影响分析[J]. 地下水, 2005, 27(6): 493-496. DOI:10.3969/j.issn.1004-1184.2005.06.030. [38] 国家统计局. 中国统计年鉴2021[M]. 北京: 中国统计出版社, 2021. |