[1] 雍萍, 王杰, 葛俊祥. 基于失配处理的OFDM雷达通信一体化共享信号旁瓣抑制技术[J]. 信号处理, 2020, 36(10): 1698-1707. DOI:10.16798/j.issn.1003-0530.2020.10.009. [2] 梁兴东, 李强, 王杰, 等. 雷达通信一体化技术研究综述[J]. 信号处理, 2020, 36(10):1615-1627. DOI:10.16798/j.issn.1003-0530.2020.10.001. [3] 杨熙, 戎华, 王君可. 雷达-电子战-通信一体化系统雷达侦察作战效能模型研究[J]. 科技信息, 2014(13): 220-221. DOI:10.3969/j.issn.1001-9960.2014.13.155. [4] 刘永军, 廖桂生, 杨志伟. 基于OFDM的雷达通信一体化波形模糊函数分析[J]. 系统工程与电子技术, 2016, 38(9): 2008-2018. DOI:10.3969/j.issn.1001-506X.2016.09.07. [5] 曾瑞琪, 刘方正, 姜秋喜, 等. 雷达通信一体化的六种主要技术体制[J]. 现代雷达, 2019, 41(2): 10-14, 30. DOI:10.16592/j.cnki.1004-7859.2019.02.003. [6] Moghaddasi J, Wu K. Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform[J]. IEEE Access, 2016, 4: 818-838. DOI:10.1109/ACCESS.2016.2530979. [7] Ren P, Munari A, Petrova M. Performance analysis of a time-sharing joint radar-communications network[C]//2020 International Conference on Computing, Networking and Communications (ICNC). Big Island, HI, USA. IEEE, 2020: 908-913. DOI:10.1109/ICNC47757.2020.9049687. [8] Reichardt L, Sturm C, Grünhaupt F, et al. Demonstrating the use of the IEEE 802.11P car-to-car communication standard for automotive radar[C]//2012 6th European Conference on Antennas and Propagation (EUCAP). Prague, Czech Republic. IEEE, 2012: 1576-1580. DOI:10.1109/EuCAP.2012.6206084. [9] 李晓柏, 杨瑞娟, 程伟. 基于频率调制的多载波Chirp信号雷达通信一体化研究[J]. 电子与信息学报, 2013, 35(2): 406-412. DOI:10.3724/SP.J.1146.2012.00567. [10] Chen X, Feng Z Y, Wei Z Q, et al. Code-division OFDM joint communication and sensing system for 6G machine-type communication[J]. IEEE Internet of Things Journal, 2021, 8(15): 12093-12105. DOI:10.1109/JIOT.2021.3060858. [11] Liu F, Masouros C, Li A, et al. MU-MIMO communications with MIMO radar: from Co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755-2770. DOI:10.1109/TWC.2018.2803045. [12] 田团伟, 邓浩, 鲁建华, 等. 智能反射面辅助雷达通信双功能系统的多载波波形优化方法[J]. 雷达学报, 2022, 11(2): 240-254. DOI:10.12000/JR21138. [13] 伍光新, 姚元, 祁琳琳. 雷达通信波形一体化发展综述[J]. 现代雷达, 2021, 43(9): 37-45. DOI:10.16592/j.cnki.1004-7859.2021.09.007. [14] 姜孟超, 廖桂生, 杨志伟, 等. 一种NLFM-CPM雷达通信一体化信号设计[J]. 系统工程与电子技术, 2019, 41(1): 35-42. DOI:10.3969/j.issn.1001-506X.2019. 01.06. [15] 周宇, 杨慧婷, 谷亚彬,等. 基于调频率调制的雷达通信共享信号研究[J]. 电子科技大学学报, 2017, 46(6): 830-835. DOI:10.3969/j.issn.1001-0548.2017.06.006. [16] 王小江, 张贞凯. 多符号OFDM雷达通信一体化波形优化设计方法[J]. 电光与控制, 2021, 28(7): 83-87. DOI:10.3969/j.issn.1671-637X.2021.07.017. [17] Jiang M, Qi L L, Yao Y, et al. Radar and communication integration based on OFDM signal[C]//2020 IEEE International Conference on Signal Processing, Communi-cations and Computing (ICSPCC), Macau, China. IEEE, 2020. DOI:10.1109/ICSPCC50002.2020.9259515. [18] Li W L, Xiang Z, Ren P. Waveform design for dual-function radar-communication system with golay block coding[J]. IEEE Access, 2019, 7: 184053-184062. DOI:10.1109/ACCESS.2019.2960658. [19] Levanon N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(6): 276-284. DOI:10.1049/ip-rsn:20000734. [20] Franken G E A, Nikookar H, Genderen P V. Doppler tolerance of OFDM-coded radar signals[C]//2006 European Radar Conference. Manchester, UK. IEEE, 2006: 108-111. DOI:10.1109/EURAD.2006.280285. [21] 周安敉. 基于OFDM的雷达通信一体化波形设计研究[D]. 石家庄:河北科技大学, 2020. [22] Ma H, Sun X, Jin W X. Integrated waveform design based on spread spectrum OFDM radar communication[C]// 2019 IEEE 3rd Advanced Information Management, Communi-cates, Electronic and Automation Control Conference. Chong-qing, China. IEEE, 2020: 1258-1263. DOI:10.1109/IMCEC46724.2019.8984147. [23] 侯艳丽, 周安敉, 郭鑫. 基于预编码的正交频分复用雷达通信一体化信号设计[J]. 科学技术与工程, 2021, 21(2): 611-615. DOI:10.3969/j.issn.1671-1815.2021. 02.028. [24] 张霄霄, 梁兴东, 王杰, 等. 融合失配处理和LMS滤波的雷达通信一体化OFDM信号距离旁瓣抑制技术[J]. 信号处理, 2021, 37(9): 1727-1738. DOI:10.16798/j.issn.1003-0530.2021.09.017. [25] 左家骏, 杨瑞娟, 程伟, 等. OFDM雷达通信共享信号距离旁瓣抑制研究[J]. 信号处理, 2020, 36(10): 1662-1667. DOI:10.16798/j.issn.1003-0530.2020.10.005. [26] 林清源, 王彦平, 洪文. 一种基于CLEAN的SAR图像旁瓣抑制方法[J]. 中国科学院研究生院学报, 2011, 28(3): 355-359. DOI:10.7523/j.issn.2095-6134.2011. 3.012. [27] 张天贤, 夏香根. OFDM SAR成像方法综述[J]. 雷达学报, 2020, 9(2): 243-258. DOI:10.12000/JR19116. [28] Zhang T X, Xia X G. OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. IEEE Transactions on Geoscience Remote Sensing, 2014, 53(1): 394-404. DOI:10.1109/TGRS.2014.2322813. [29] 李占亚, 张光荣, 陈晓辉, 等. 同时含有限幅失真和量化失真的OFDM系统的联合优化[J]. 中国科学院大学学报, 2014, 31(2): 249-256. DOI:10.7523/jssn.2095-6134.2014.02.016. [30] Armstrong J. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering[J]. Electronics Letters, 2002, 38(5): 246-247. DOI:10.1049/el:20020175. [31] Wang Y, Ge J H, Wang L H, et al. Reduction of PAPR of OFDM signals using nonlinear companding transform[J]. Wireless Personal Communications, 2013, 71(1): 383-397. DOI:10.1007/s11277-012-0820-2. [32] Bäuml R W, Fischer R F H, Huber J B. Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping[J]. Electronics Letters, 1996, 32(22): 2056-2057. DOI:10.1049/el:19961384. [33] Hasan M M. VLM precoded SLM technique for PAPR reduction in OFDM systems[J]. Wireless Personal Communi-cations, 2013, 73(3): 791-801. DOI:10.1007/s11277-013-1217-6. [34] Hu S C, Wan S J, Yang M, et al. An improved SLM algorithm for OFDMA system with implicit side information[J]. Journal of Signal Processing Systems, 2022, 94(8): 837-846. DOI:10.1007/s11265-022-01750-x. [35] Goel A, Gupta S. Side information embedding scheme for PTS based PAPR reduction in OFDM systems[J]. Alexandria Engineering Journal, 2022, 61(12): 11765-11777. DOI:10.1016/j.aej.2022.05.021. [36] Chen C Y, Wang C H, Chao C C. Complementary sets and reed-muller codes for peak-to-average power ratio reduction in OFDM[M]//Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 317-327. DOI:10.1007/11617983_31. [37] Sengupta S, Lande B K. An approach to PAPR reduction in OFDM using Goppa codes[J]. Procedia Computer Science, 2020, 167: 1268-1280. DOI:10.1016/j.procs.2020. 03.443. [38] Garmatyuk D. Cross-range SAR reconstruction with multicarrier OFDM signals[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 808-812. DOI:10.1109/LGRS.2011.2182176. [39] Garmatyuk D, Brenneman M. Adaptive multicarrier OFDM SAR signal processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3780-3790. DOI:10.1109/TGRS.2011.2165546. |