[1] Lowrie P. SCATS: sydney co-ordinated adaptive traffic system: a traffic responsive method of controlling urban traffic[R]. Transportation Research Board, 1990. [2] Hunt P, Robertson D, Bretherton R, et al. SCOOT-a traffic responsive method of coordinating signals[R]. Transportation Research Board, 1981. [3] Varaiya P. Max pressure control of a network of signalized intersections[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 177-195. DOI: 10.1016/j.trc.2013.08.014. [4] Cools S B, Gershenson C, D’Hooghe B. Self-organizing traffic lights: a realistic simulation[M]//Advances in Applied Self-Organizing Systems. London: Springer, 2013: 45-55. DOI: 10.1007/978-1-4471-5113-5_3. [5] Koonce P, Rodegerdts L. Traffic signal timing manual[R/OL]: United States. Federal Highway Administration, 2008. (2008-06-01) [2023-09-05]. https://rosap.ntl.bts.gov/view/dot/800. [6] Robertson D. TRANSYT: a traffic network study tool[R]. Transportation Research Board, 1969. [7] Sutton R S, Barto A G. Reinforcement learning: an introduction[M]. 2nd ed. Cambridge, Massachusetts: MIT press, 2018. [8] Wei H A, Zheng G J, Yao H X, et al. IntelliLight: a reinforcement learning approach for intelligent traffic light control[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London United Kingdom. New York, NY, USA: ACM, 2018: 2496-2505. DOI: 10.1145/3219819. 3220 096. [9] Wei H A, Xu N, Zhang H C, et al. CoLight: learning network-level cooperation for traffic signal control[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing China. New York, NY, USA: ACM, 2019: 1913-1922. DOI: 10.1145/3357384.3357902. [10] Wei H A, Chen C C, Zheng G J, et al. PressLight: learning max pressure control to coordinate traffic signals in arterial network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage AK USA. New York, NY, USA: ACM, 2019: 1290-1298. DOI: 10.1145/3292500.3330949. [11] Zang X S, Yao H X, Zheng G J, et al. MetaLight: Value-based meta-reinforcement learning for traffic signal control[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1153-1160. DOI: 10.1609/aaai.v34i01.5467. [12] Joo H, Ahmed S H, Lim Y. Traffic signal control for smart cities using reinforcement learning[J]. Computer Communications, 2020, 154: 324-330. DOI: 10.1016/j.comcom.2020.03.005. [13] Ge H W, Gao D W, Sun L, et al. Multi-agent transfer reinforcement learning with multi-view encoder for adaptive traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12572-12587. DOI: 10.1109/TITS.2021.3115240. [14] Timur M I A, Dharmawan A, Istiyanto J E, et al. A3C and A2C performance comparison in intelligent traffic signal controller using Indonesian traffic rules simulation[C]//AIP Conference Proceedings. AIP Publishing LLC, 2023: 020014. DOI: 10.1063/5.0119098. [15] Yang H, Zhao H, Wang Y, et al. Deep reinforcement learning based strategy for optimizing phase splits in traffic signal control[C]//2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022: 2329-2334. DOI: 10.1109/ITSC55140.2022.9922531. [16] Yang J C, Zhang J P, Wang H H. Urban traffic control in software defined internet of things via a multi-agent deep reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3742-3754. DOI: 10.1109/TITS.2020.3023788. [17] Huang L B, Qu X H. Improving traffic signal control operations using proximal policy optimization[J]. IET Intelligent Transport Systems, 2023, 17(3): 592-605. DOI: 10.1049/itr2.12286. [18] Chin Y K, Kow W Y, Khong W L, et al. Q-learning traffic signal optimization within multiple intersections traffic network[C]//2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation. IEEE, 2012: 343-348. DOI: 10.1109/EMS.2012.75. [19] Li S E. Deep reinforcement learning[M]//Reinforcement Learning for Sequential Decision and Optimal Control. Singapore: Springer, 2023: 365-402. DOI: 10.1007/978-981-19-7784-8_10. [20] Prabuchandran K J, Hemanth Kumar A N, Bhatnagar S. Multi-agent reinforcement learning for traffic signal control[C]//17th International IEEE Conference on Intelligent Transportation Systems (ITSC). October 8-11, 2014, Qingdao, China. IEEE, 2014: 2529-2534. DOI: 10.1109/ITSC.2014.6958095. [21] Lyu X G, Xiao Y C, Daley B, et al. Contrasting centralized and decentralized critics in multi-agent reinforcement learning[EB/OL]. 2021: arXiv: 2102.04402. (2021-02-08) [2023-09-06]. https://arxiv.org/abs/2102.04402. [22] Li X S, Li J C, Shi H B. A multi-agent reinforcement learning method with curriculum transfer for large-scale dynamic traffic signal control[J]. Applied Intelligence, 2023: 1-15. DOI: 10.1007/s10489-023-04652-y. [23] Bokade R, Jin X N, Amato C. Multi-agent reinforcement learning based on representational communication for large-scale traffic signal control[J]. IEEE Access, 2023, 11: 47646-47658. DOI: 10.1109/ACCESS.2023.3275883. [24] Yan L P, Zhu L L, Song K, et al. Graph cooperation deep reinforcement learning for ecological urban traffic signal control[J]. Applied Intelligence, 2023, 53(6): 6248-6265. DOI: 10.1007/s10489-022-03208-w. [25] Nishi T, Otaki K, Hayakawa K, et al. Traffic signal control based on reinforcement learning with graph convolutional neural nets[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). November 4-7, 2018, Maui, HI, USA. IEEE, 2018: 877-883. DOI: 10.1109/ITSC.2018.8569301. [26] Yau K L A, Qadir J, Khoo H L, et al. A survey on reinforcement learning models and algorithms for traffic signal control[J]. ACM Computing Surveys, 2018, 50(3): 1-38. DOI: 10.1145/3068287. [27] Zhang Z, Yang J C, Zha H. Integrating independent and centralized multi-agent reinforcement learning for traffic signal network optimization[C]//Proceedings of the 19th Inter-national Conference on Autonomous Agents and MultiAgent Systems. 2020: 2083-2085. DOI: 10.5555/3398761.339 9082. [28] Li L, Lv Y S, Wang F Y. Traffic signal timing via deep reinforcement learning[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(3): 247-254. DOI: 10.1109/JAS.2016.7508798. [29] Genders W, Razavi S. Using a deep reinforcement learning agent for traffic signal control[EB/OL]. 2016: arXiv: 1611.01142. (2016-11-03) [2023-09-06]. https://arxiv.org/abs/1611.01142. [30] Aslani M, Mesgari M S, Wiering M. Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 732-752. DOI: 10.1016/j.trc.2017.09.020. [31] Chen X Y, Xiong G, Lv Y S, et al. A collaborative communication-qmix approach for large-scale networked traffic signal control[C]//2021 IEEE International Intelligent Transportation Systems Conference (ITSC). September 19-22, 2021, Indianapolis, IN, USA. IEEE, 2021: 3450-3455. DOI: 10.1109/ITSC48978.2021.9564683. [32] Rashid T, Samvelyan M, de Witt C S, et al. Monotonic value function factorisation for deep multi-agent reinforcement learning[EB/OL].2020, arXiv: 2003.08839. (2020-03-19) [2023-09-06]. https://doi.org/10.48550/arXiv.2003.08839. [33] Wang Y N, Xu T, Niu X, et al. STMARL: a spatio-temporal multi-agent reinforcement learning approach for cooperative traffic light control[J]. IEEE Transactions on Mobile Computing, 2022, 21(6): 2228-2242. DOI: 10.1109/TMC.2020.3033782. [34] Wu L B, Wang M, Wu D, et al. DynSTGAT: dynamic spatial-temporal graph attention network for traffic signal control[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Virtual Event Queensland Australia. New York, NY, USA: ACM, 2021: 2150-2159. DOI: 10.1145/3459637.3482254. [35] Zhao C, Dai X Y, Wang X, et al. Learning transformer-based cooperation for networked traffic signal control[C]//2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022: 3133-3138. DOI: 10.1109/ITSC55140.2022.9921995. [36] Kong A Y, Lu B X, Yang C Z, et al. A deep reinforcement learning framework with memory network to coordinate traffic signal control[C]//2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022: 3825-3830. DOI: 10.1109/ITSC55140.2022.9921752. [37] Littman M L. Markov games as a framework for multi-agent reinforcement learning[M]//Machine learning Proceedings 1994. Amsterdam: Elsevier, 1994: 157-163. DOI: 10.1016/b978-1-55860-335-6.50027-1. [38] Wang X Q, Ke L J, Qiao Z M, et al. Large-scale traffic signal control using a novel multiagent reinforcement learning[J]. IEEE Transactions on Cybernetics, 2021, 51(1): 174-187. DOI: 10.1109/TCYB.2020.3015811. [39] Mao F, Li Z H, Li L. A comparison of deep reinforcement learning models for isolated traffic signal control[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(1): 160-180. DOI: 10.1109/MITS.2022.3144797. [40] Lowe R, Wu Y, Tamar A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[J/OL]. Advances in Neural Information Processing Systems, 2017: 6379-6390. (2017-12-04) [2023-09-05]. https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html. [41] Behrisch M, Bieker L, Erdmann J, et al. SUMO-simulation of urban mobility: an overview[C/OL]//Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation. ThinkMind, 2011. (2011-10-23) [2023-09-05]. https://elib.dlr.de/71460. [42] Yi C L, Wu J, Ren Y Y, et al. A spatial-temporal deep reinforcement learning model for large-scale centralized traffic signal control[C]//2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022: 275-280. DOI: 10.1109/ITSC55140.2022.9922459. [43] Zeng J, Xin J, Cong Y, et al. HALight: hierarchical deep reinforcement learning for cooperative arterial traffic signal control with cycle strategy[C]//2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022: 479-485. DOI: 10.1109/ITSC55140.2022. 9921819. |