[1] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2014, Columbus, OH, USA. IEEE, 2014: 580-587. DOI:10.1109/CVPR.2014.81. [2] Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2016: 1440-1448. DOI:10.1109/ICCV.2015.169. [3] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI:10.1109/TPAMI.2016.2577031. [4] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 779-788. DOI:10.1109/CVPR.2016.91. [5] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. 2018, arXiv: 1804.02767. (2018-04-08)[2022-12-15].https://arxiv.org/abs/1804.02767. [6] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. 2020, arXiv: 2004.10934. (2020-04-23)[2022-12-15].https://arxiv.org/abs/2004.10934. [7] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. 2022, arXiv: 2207.02696. (2022-07-06)[2022-12-15]. https://arxiv.org/abs/2207.02696. [8] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 6517-6525. DOI:10.1109/CVPR.2017.690. [9] Li B, Yao Y Q, Tan J R, et al. Equalized focal loss for dense long-tailed object detection [EB/OL]. 2022, arXiv: 2201.02593. (2022-06-30)[2022-12-15]. https://arxiv.org/abs/2201.02593. [10] Zhu X G, Li L, Zhang W G, et al. Dependency exploitation: a unified CNN-RNN approach for visual emotion recognition[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. August 19-25, 2017, Melbourne, Australia. New York: ACM, 2017: 3595-3601. DOI:10.5555/3172077.3172392. [11] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. [12] Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 761-769. DOI:10.1109/CVPR.2016.89. [13] Pang J M, Chen K, Shi J P, et al. Libra R-CNN: towards balanced learning for object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2020: 821-830. DOI:10.1109/CVPR.2019.00091. [14] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. DOI:10.1109/TPAMI.2018.2858826. [15] 张胜男, 许燕斌, 董峰. 自适应阈值收缩算子的稀疏正则化图像重建算法[J]. 中国科学院大学学报, 2020, 37(2): 242-247. DOI:10.7523/j.issn.2095-6134.2020. 02.014. [16] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 1. December 3-6, 2012, Lake Tahoe, Nevada. New York: ACM, 2012: 1097-1105. DOI: 10.5555/2999134.2999257. [17] Uijlings J R, van de Sande K E A, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. DOI:10.1007/s11263-013-0620-5. [18] 矫腾章, 胡玉新, 吕鹏, 等. 一种在轨海上多运动舰船目标检测和跟踪方法[J]. 中国科学院大学学报, 2020, 37(3): 368-378. DOI:10.7523/j.issn.2095-6134.2020. 03.010. [19] Tang J, Hou H J, Sheng G H, et al. Transformer fault diagnosis model with unbalanced samples based on SMOTE algorithm and focal loss[C]//2021 4th International Conference on Energy, Electrical and Power Engineering(CEEPE). April 23-25, 2021, Chongqing, China. IEEE, 2021: 693-697. DOI:10.1109/CEEPE51765.2021.9475 723. [20] 肖振久, 孔祥旭, 宗佳旭, 等. 自适应聚焦损失的图像目标检测算法[J]. 计算机工程与应用, 2021, 57(23): 185-192. DOI:10.3778/j.issn.1002-8331.2104-0321. [21] 傅博文, 唐向宏, 肖涛. Focal损失在图像情感分析上的应用研究[J]. 计算机工程与应用, 2020, 56(10): 179-184. DOI:10.3778/j.issn.1002-8331.2003-0028. [22] 孟曦婷, 计璐艳, 赵永超, 等. 基于深度学习的多尺度导弹发射井目标检测[J]. 中国科学院大学学报, 2021, 38(6): 800-808. DOI:10.7523/j.issn.2095-6134.2021. 06.010. [23] 李彬, 汪诚, 丁相玉, 等. 改进YOLOv4的表面缺陷检测算法[J/OL]. 北京航空航天大学学报, 2023,49(3):710-717. DOI:10.13700/j.bh.1001-5965.2021.0301. [24] 王俊岭, 邓玉莲, 李英, 等. 排水管道检测与缺陷识别技术综述[J].科学技术与工程, 2020, 20(33): 13520-13528. DOI:10.3969/j.issn.1671-1815.2020.33.002. [25] 王庆, 姚俊, 谭文禄, 等. 基于Faster R-CNN的排水管道缺陷检测研究[J]. 软件导刊, 2019, 18(10): 40-44, 49. DOI:10.11907/rjdk.191817. [26] 中华人民共和国住房和城乡建设部. 城镇排水管道检测与评估技术规程: CJJ 181—2012[S]. 北京: 中国建筑工业出版社, 2012. |