[1] Cramer W, Field C B. Comparing global models of terrestrial net primary productivity (NPP): introduction[J]. Global Change Biology, 1999, 5(S1): iii-iiv. DOI: 10.1046/j.1365-2486.1999.00001.x. [2] Lu Y Y, Huang Y, Zhuang Q L, et al.China’s terrestrial ecosystem carbon balance during the 20th century: an analysis with a process-based biogeochemistry model[J]. Carbon Balance and Management, 2022, 17(1): 16. DOI: 10.1186/s13021-022-00215-9. [3] 张亚楠,宋小宁,冷佩,等.近20年黄河流域夏季土壤水分时空变化特征及驱动因素分析[J].中国科学院大学学报(中英文), 2024, 41(4):477-489. DOI:10.7523/j.ucas.2023.041. [4] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424. DOI: 10.17521/cjpe.2007.0050. [5] Chu C J, Bartlett M, Wang Y S, et al.Does climate directly influence NPP globally?[J]. Global Change Biology, 2016, 22(1): 12-24. DOI: 10.1111/gcb.13079. [6] Zhao M S, Running S W.Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010, 329(5994): 940-943. DOI: 10.1126/science.1192666. [7] Li Z S, Liu G H, Fu B J, et al.The potential influence of seasonal climate variables on the net primary production of forests in Eastern China[J]. Environmental Management, 2011, 48(6): 1173-1181. DOI: 10.1007/s00267-011-9710-8. [8] 徐勇, 郑志威, 孟禹弛, 等. 西南地区不同类型植被NPP时空演变及影响因素探究[J]. 环境科学, 2024, 45(1): 262-274. DOI: 10.13227/j.hjkx.202302121. [9] 吴丽媛, 神祥金, 刘奕雯, 等. 青藏高原草本沼泽植被净初级生产力时空变化及其对气候变化的响应[J]. 生态学报, 2024, 44(5): 2115-2126. DOI: 10.20103/j.stxb.202301110075. [10] 徐虹, 程晋昕, 何雨芩, 等. 气候变化和人类活动对云南省植被净初级生产力的影响[J]. 高原气象, 2024, 43(4): 1064-1075. DOI: 10.7522/j.issn.1000-0534.2023.00047. [11] 王原, 黄玫, 王祥荣. 气候和土地利用变化对上海市农田生态系统净初级生产力的影响[J]. 环境科学学报, 2010, 30(3): 641-648. DOI: 10.13671/j.hjkxxb.2010.03.029. [12] Mohamed M A A, Babiker I S, Chen Z M, et al. The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP)[J]. Science of The Total Environment, 2004, 332(1/2/3): 123-137. DOI: 10.1016/j.scitotenv.2004.03.009. [13] Imhoff M L, Bounoua L, DeFries R, et al. The consequences of urban land transformation on net primary productivity in the United States[J]. Remote Sensing of Environment, 2004, 89(4): 434-443. DOI: 10.1016/j.rse.2003.10.015. [14] Fu Y C, Lu X Y, Zhao Y L, et al.Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): a case study in Guangzhou, China[J]. Remote Sensing, 2013, 5(8): 4125-4144. DOI: 10.3390/rs5084125. [15] Evans J, Geerken R.Discrimination between climate and human-induced dryland degradation[J]. Journal of Arid Environments, 2004, 57(4): 535-554. DOI: 10.1016/S0140-1963(03)00121-6. [16] 朱思佳, 冯徽徽, 邹滨, 等. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析[J]. 自然资源遥感, 2022, 34(3): 196-206. DOI: 10.6046/zrzyyg.2021283. [17] 姜春, 吴志峰, 程炯, 等. 气候波动和土地覆盖变化对广东省植被净初级生产力的相对影响[J]. 热带亚热带植物学报, 2016, 24(4): 397-405. DOI: 10.11926/j.issn.1005-3395.2016.04.006. [18] 刘一丹, 姚晓军, 李宗省, 等. 气候变化和土地利用覆盖变化对河西地区植被净初级生产力的影响[J]. 干旱区研究, 2024, 41(1): 169-180. DOI: 10.13866/j.azr.2024.01.16. [19] 徐勇, 卢云贵, 戴强玉, 等. 气候变化和土地利用变化对长江中下游地区植被NPP变化相对贡献分析[J]. 中国环境科学, 2023, 43(9): 4988-5000. DOI: 10.19674/j.cnki.issn1000-6923.20230413.005. [20] Wu S H, Zhou S L, Chen D X, et al.Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China[J]. Science of The Total Environment, 2014, 472: 397-406. DOI: 10.1016/j.scitotenv.2013.10.128. [21] 刘婷婷, 袁燕萍, 叶许春. 城市化背景下重庆主城区植被净初级生产力变化特征及其影响因素[J]. 生态学杂志, 2024, 43(8): 2266-2274. DOI: 10.13292/j.1000-4890.202408.008. [22] Zhao C Y, Chen S S, Jia K, et al.Quantitative assessment of the impacts of climate change and human activity on the net primary productivity of subtropical vegetation: the case of Shaoguan, Guangdong, China[J]. Forests, 2023, 14(12): 2447. DOI: 10.3390/f14122447. [23] 裴凤松, 黎夏, 刘小平, 等. 城市扩张驱动下植被净第一性生产力动态模拟研究: 以广东省为例[J]. 地球信息科学学报, 2015, 17(4): 469-477. DOI: 10.3724/SP.J.1047.2015.00469. [24] 匡耀求, 欧阳婷萍, 邹毅, 等. 广东省碳源碳汇现状评估及增加碳汇潜力分析[J]. 中国人口·资源与环境, 2010, 20(12): 56-61. DOI: 10.3969/j.issn.1002-2104.2010.12.012. [25] 申冲, 王春林, 赵晓松, 等. 人工红树林碳通量变化特征及其影响因素分析[J]. 南京信息工程大学学报(自然科学版), 2022, 14(1): 11-20. DOI:10.13878/j.cnki.jnuist.2022.01.002. [26] Liu Z H, Wang T, Qu Y H, et al.Prediction of high-quality MODIS-NPP product data[J]. Remote Sensing, 2019, 11(12): 1458. DOI: 10.3390/rs11121458. [27] Zhang Y H, Ye A Z.Would the obtainable gross primary productivity (GPP) products stand up?A critical assessment of 45 global GPP products[J]. Science of The Total Environment, 2021, 783: 146965. DOI: 10.1016/j.scitotenv.2021.146965. [28] Zhao X, Liang S L, Liu S H, et al.The global land surface satellite (GLASS) remote sensing data processing system and products[J]. Remote Sensing, 2013, 5(5): 2436-2450. DOI: 10.3390/rs5052436. [29] Hersbach H, Bell B, Berrisford P, et al.The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049. DOI: 10.1002/qj.3803. [30] Zhang X, Liu L Y, Chen X D, et al.GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6): 2753-2776. DOI:10.5194/essd-13-2753-2021. [31] He S L, Li J, Wang J L, et al.Evaluation and analysis of upscaling of different land use/land cover products (FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1 and CNLUCC): a case study in China[J]. Geocarto International, 2022, 37(27): 17340-17360. DOI: 10.1080/10106049.2022.2127926. [32] Mu H W, Li X C, Wen Y N, et al.A global record of annual terrestrial Human Footprint dataset from 2000 to 2018[J]. Scientific Data, 2022, 9(1): 176. DOI: 10.1038/s41597-022-01284-8. [33] Poggio L, de Sousa L M, Batjes N H, et al. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty[J]. Soil, 2021, 7(1): 217-240. DOI: 10.5194/soil-7-217-2021. [34] Hamed K H, Rao A R.A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998, 204(1-4): 182-196. DOI:10.1016/S0022-1694(97)00125-X. [35] Pearson K.VII. Note on regression and inheritance in the case of two parents[J].Proceedings of the Royal Society of London, 1895, 58: 240-242. [36] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134. DOI: 10.11821/dlxb201701010. [37] Pontius R G, Shusas E, Mceachern M.Detecting important categorical land changes while accounting for persistence[J].Agriculture, Ecosystems & Environment, 2004, 101(2):251-268.DOI:10.1016/j.agee.2003.09.008. [38] 王子安, 孟庆岩, 张琳琳, 等. 基于CA-Markov模型的海口市城市热岛模拟预测[J]. 中国科学院大学学报, 2022, 39(6): 742-753. DOI: 10.7523/j.ucas.2021.0006. [39] Sun J K, Yue Y, Niu H P.Evaluation of NPP using three models compared with MODIS-NPP data over China[J]. PLoS One, 2021, 16(11): e0252149. DOI: 10.1371/journal.pone.0252149. [40] Peng D L, Wu C Y, Zhang B, et al.The influences of drought and land-cover conversion on inter-annual variation of NPP in the three-north shelterbelt program zone of China based on MODIS data[J]. PLoS One, 2016, 11(6): e0158173. DOI: 10.1371/journal.pone.0158173. [41] 何沐全, 石艳军, 王晨茜, 等. 广东省植被生态质量演变与气象条件贡献分析[J]. 生态环境学报, 2024, 33(5): 679-688. DOI: 10.16258/j.cnki.1674-5906.2024.05.002. [42] 王柯文, 秦见, 马海涛. 基于CA-Markov模型的重庆西部新城城市扩张时空演化模拟与生态响应[J]. 中国科学院大学学报, 2023, 40(4): 496-505. DOI: 10.7523/j.ucas.2022.008. [43] Zelinka M D, Myers T A, McCoy D T, et al. Causes of higher climate sensitivity in CMIP6 models[J]. Geophysical Research Letters, 2020, 47(1): e2019GL085782. DOI: 10.1029/2019GL085782. [44] Kondo M, Ichii K, Patra P K, et al.Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake[J]. Geophysical Research Letters, 2018, 45(10): 4820-4830. DOI: 10.1029/2018GL077633. [45] Tharammal T, Bala G, Narayanappa D, et al.Potential roles of CO2 fertilization, nitrogen deposition, climate change, and land use and land cover change on the global terrestrial carbon uptake in the twenty-first century[J]. Climate Dynamics, 2019, 52(7): 4393-4406. DOI: 10.1007/s00382-018-4388-8. [46] Houghton R A.Interactions between land-use change and climate-carbon cycle feedbacks[J]. Current Climate Change Reports, 2018, 4(2): 115-127. DOI: 10.1007/s40641-018-0099-9. [47] Wang S, Fu B J, Wei F L, et al.Drylands contribute disproportionately to observed global productivity increases[J]. Science Bulletin, 2023, 68(2): 224-232. DOI: 10.1016/j.scib.2023.01.014. [48] 张悦, 李珊珊, 陈灏, 等. 广东省台风灾害风险综合评估[J]. 热带气象学报, 2017, 33(2): 281-288. DOI: 10.16032/j.issn.1004-4965.2017.02.015. [49] Lu N, Tian H Q, Fu B J, et al.Biophysical and economic constraints on China’s natural climate solutions[J]. Nature Climate Change, 2022, 12(9): 847-853. DOI: 10.1038/s41558-022-01432-3. |