[1] Park JH. Design of robust decentralized dynamic controller for uncertain large-scale interconnect ed systems with t ime- delays. Ieice Trans Fundamentals, 2001, E84-A (7) : 1747—1753[2] Chen CW, ChiangWL, Yeh K, et al . A stability crit erion of time-delay fuzzy systems. Journal of Marine Science and Technology, 2002, 10(1) :33—35[3] Mehdi D, Boukas EK. Stability and stabilizability of dynamical systemswith multiple time-varying delays: delay dependent criteria, Les Cahi ers duGERAD G, 2002, 27: 1—16[4] Kwon WH, Pearson AE. Feedback stabilizat ion of linear systems w ith delayed control . IEEE Transacti ons on Automati ca Control , 1980, 25(2) :266—269[5] Arstein Z. Linear syst ems with delayed control: A reduct ion. IEEE Transactions on Automatic Control , 1982, 27: 869—879[6] Moon YS, Park PG, Kwon WH. Robust stabilization of uncertain inpu-t delayed syst ems using reduct ion method. Aut omatica , 2001, 37: 307~317[7] Noldus E. Stabilizat ion of a class of distributional convolution equat ions. Int ernational Journal Control , 1985, 41(4) : 947—960[8] Su TJ, Lu CY, Tsai JSH. LMI approach to delay-dependent robust stability for uncertain t ime- delay syst ems. IEE Proc-Control Theory Appl . ,2001, 148(3) : 209—212 |