[1] Yusufoglu E. A homotopy perturbation algorithm to solve a system of Fredholm-Volterra type integral equations[J]. Math Comput Model, 2008, 47:1 099-1 107.
[2] Yusufoglu E. Numerical expansion methods for solving systems of linear integral equations using interpolation and quadrature rules[J]. Int J Comput Math, 2007, 84(1):133-149.
[3] Huang L, Huang Y, Li X. Approximate solution of Abel integral equation[J]. Computers & Mathematics with Applications, 2008, 56(7):1 748-1 757.
[4] Yang C. Chebyshev polynomial solution of nonlinear integral equations[J]. Journal of the Franklin Institute, 2012, 349(3):947-956.
[5] Yousefi S A. Numerical solution of Abel's integral equation by using Legendre wavelets[J]. Applied Mathematics and Computation, 2006, 175(1):574-580.
[6] Khodabin M, Maleknejad K, Shekarabi F H. Application of triangular functions to numerical solution of stochastic Volterra integral equations[J]. IAENG International Journal of Applied Mathematics, 2013, 43(1):1-9.
[7] Kamyad A V, Mehrabinezhad M, Saberi-Nadjafi J. A numerical approach for solving linear and nonlinear Volterra integral equations with controlled error[J]. IAENG International Journal of Applied Mathematics, 2010, 40(2):27-32.
[8] Adomian G. Frontier problem of physics: the decomposition method[M]. New York:Kluwer Academic Publish, 1994.
[9] Bougoffa L, Rach R C, Mennouni A. A convenient technique for solving linear and nonlinear Abel integral equations by the Adomian decomposition method[J]. Applied Mathematics and Computation, 2011, 218(5): 1 785-1 793.
[10] Pandey R K, Singh O P, Singh V K. Efficient algorithms to solve singular integral equations of Abel type[J]. Computers & Mathematics with Applications, 2009, 57(4): 664-676. |