[1] Nienaber C A, Divchev D, Palisch H, et al. Early and late management of type B aortic dissection[J]. Heart, 2014, 100(19):1491-1497.
[2] Mcwilliams R G, Murphy M, Hartley D, et al. In situ stent-graft fenestration to preserve the left subclavian artery[J]. J Endovasc Ther, 2004, 11(2):170-174.
[3] Glorion M, Coscas R, Mcwilliams R G, et al. A comprehensive review of in situ fenestration of aortic endografts[J]. Eur J Vasc Endovasc Surg, 2016, 52(6):787-800.
[4] Kandail H, Hamady M, Xu X Y. Comparison of blood flow in branched and fenestrated stent-grafts for endovascular repair of abdominal aortic aneurysms[J]. J Endovasc Ther, 2015, 22(4):578-590.
[5] Jung J, Hassanein A, Lyczkowski R W. Hemodynamic computation using multiphase flow dynamics in a right coronary artery[J]. Ann Biomed Eng, 2006, 34(3):393.
[6] Schiller L. A drag coefficient correlation[J]. Zeit Ver Deutsch Ing, 1933, 77:318-320.
[7] 曾宇杰, 罗坤, 樊建人, 等. 主动脉夹层血液两相流动数值模拟分析[J]. 工程热物理学报, 2016, 37(4):780-784.
[8] Gallo D, Lefieux A, Morganti S, et al. A patient-specific follow up study of the impact of thoracic endovascular repair (TEVAR) on aortic anatomy and on post-operative hemodynamics[J]. Computers & Fluids, 2016, 141:54-61.
[9] Dill D B, Costill D L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration[J]. J Appl Physiol, 1974, 37(2):247-248.
[10] Pirola S, Cheng Z, Jarral O A, et al. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics[J]. J Biomech, 2017, 60:15-21.
[11] Ansys C. Solver theory guide[J]. Ansys CFX Release, 2006, 11:1996-2006.
[12] Cheng Z, Riga C, Chan J, et al. Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection[J]. J Vasc Surg, 2013, 57(2):35S-43S.
[13] Xie H, Zhang Y. The effect of red blood cells on blood heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 113:840-849. |