[1] Beharry A A,Woolley G A. Azobenzene photoswitches for biomolecules[J]. Chemical Society Reviews, 2011, 40(8):4422-4437.
[2] Szymanski W, Beierle J M, Kistemaker H A, et al. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches[J]. Chemical Reviews, 2013, 113(8):6114-6178.
[3] Kumar G S, Neckers D C. Photochemistry of azobenzene -containing polymers[J]. Chemical Reviews, 1989, 89(8):1915-1925.
[4] Liu Z F, Hashimoto K,Fujishima A. Photoelectro -chemical information-storage using an azobenzene derivative[J]. Nature,1990,347(6294):658-660.
[5] Zimmerman G, Chow L Y, Paik U J.The photochemical isomerization of azobenzene[J]. Journal of the American Chemical Society, 1958, 80(14):3528-3531.
[6] Yan Y, Chen J I, Ginger D S. Photoswitchable oligonucleotide-modified gold nanoparticles:controlling hybridization stringency with photon dose[J]. Nano Letter, 2012, 12(5):2530-2536.
[7] Yang Y, Endo M, Hidaka K, et al. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns[J]. Journal of the American Chemical Society, 2012, 134(51):20645-20653.
[8] Lohmann F, Ackermann D,Famulok M. Reversible light switch for macrocycle mobility in a DNA rotaxane[J]. Journal of the American Chemical Society, 2012, 134(29):11884-11887.
[9] Sahoo J P, Sudhir Kumar. Medicinal interest of AZO-based organic compounds:a review[J]. Asian Journal of Pharmaceutical and Clinical Research,2016, 9(1):33-39.
[10] Jones M W, Mantovani G, Blindauer C A, et al. Direct peptide bioconjugation/PEGylation at tyrosine with linear and branched polymeric diazonium salts[J]. Journal of the American Chemical Society, 2012, 134(17):7406-7413.
[11] Yan Y, Wang X, Chen J I,et al. Photoisomerization quantum yield of azobenzene-modified DNA depends on local sequence[J]. Journal of the American Chemical Society, 2013, 135(22):8382-8387.
[12] Nakasone Y, Ooi H, Kamiya Y,et al. Dynamics of inter-DNA chain interaction of photoresponsive DNA[J]. Journal of the American Chemical Society, 2016, 138(29):9001-9004.
[13] Kingsland A, Samai S, Yan Y, et al. Local density fluctuations predict photoisomerization quantum yield of azobenzene-modified DNA[J]. Journal of Physical Chemistry Letters, 2016, 7(15):3027-3031.
[14] Chaulk S G, MacMillan A M. Caged RNA:photo-control of a ribozyme reaction[J]. Nucleic Acids Res, 1998, 26(13):3173-3178.
[15] Liang X, Asanuma H,Komiyama M. Photoregulation of DNA triplex formation by azobenzene[J]. Nucleic Acids Research, 2002, 124(9):1877-1883.
[16] Liu M, Asanuma H,Komiyama M. Azobenzene-tethered T7 promoter for efficient photoregulation of transcription[J]. Journal of the American Chemical Society, 2006, 128(3):1009-1015.
[17] Matsunaga D, Asanuma H, Komiyama M. Photoregulation of RNA digestion by RNase H with azobenzene-tethered DNA[J]. Journal of the American Chemical Society, 2004, 126:11452-11453.
[18] Wang X, Huang J, Zhou Y,et al.Conformational switching of G-quadruplex DNA by photoregulation[J]. Angewandte Chemie International Edition, 2010, 49(31):5305-5309.
[19] Beharry A A, Sadovski O,Woolley G A. Azobenzene photoswitching without ultraviolet light[J]. Journal of the American Chemical Society, 2011, 133(49):19684-19687.
[20] Dong M, Babalhavaeji A, Samanta S,et al.Red-shifting azobenzene photoswitches for in vivo use[J]. Accounts of Chemical Research,2015,48(10):2662-2670.
[21] Nishioka H, Liang X, Asanuma H. Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form[J]. Chemistry, 2010, 16(7):2054-2062.
[22] Poloni C, Szymanski W, Hou L,et al. A fast, visible-light-sensitive azobenzene for bioorthogonal ligation[J]. Chemistry, 2014, 20(4):946-951.
[23] Bock L C, Griffin L C, Latham J A,et al. Selection of single-stranded-dna molecules that bind and inhibit human thrombin[J]. Nature, 1992, 355(6360):564-566.
[24] Riccardi C, Russo Krauss I, Musumeci D, et al. Fluorescent thrombin binding aptamer-tagged nanoparticles for an efficient and reversible control of thrombin activity[J]. ACS Applied Materials & Interfaces, 2017, 9(41):35574-35587.
[25] Thevarpadam J, Bessi I, Binas O,et al. Photo-responsive formation of an intermolecular minimal G-quadruplex motif[J]. Angewandte Chemie International Edition, 2016, 55(8):2738-2742.
[26] Tsai Y H, Essig S, James J R, et al. Selective, rapid and optically switchable regulation of protein function in live mammalian cells[J]. Nature Chemistry, 2015, 7(7):554-561.
[27] Reis S A, Ghosh B, Hendricks J A, et al. Light-controlled modulation of gene expression by chemical optoepigenetic probes[J]. Nature Chemistry Biololgy, 2016, 12(5):317-323.
[28] Kamiya Y, Takagi T, Ooi H, et al. Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light[J]. ACS Synthetic Biology, 2015, 4(4):365-370.
[29] Bian Q, Wang W, Wang S, et al. Light-triggered specific cancer cell release from cyclodextrin/azobenzene and aptamer-modified substrate[J]. ACS Applied Materials & Interfaces,2016:acsami.6b09734.
[30] Wu L, Wu Y, Jin H,et al. Photoswitching properties of hairpin ODNs with azobenzene derivatives at the loop position[J]. Med Chem Comm, 2015, 6:461-468.
[31] 孔德佳, 莫蒙武, 季禾茗, 等. 偶氮苯作用的核酸开关在生物体内的可逆光调控[J]. 中国科学:化学, 2018, 48(7):698-711.
[32] 季禾茗,孔德佳,莫蒙武,等. 偶氮苯修饰的DNA对引物延伸的光调控[J].中国科学院大学学报,2018,36(1):470-479.
[33] Liu M, Asanuma H, Komiyama M. Azobenzene-tethered T7 promoter for efficient photoregulation of transcription[J]. Journal of the American Chemical Society, 2006, 128(3):1009-1015.
[34] Liang X, Wakuda R, Fujioka K, et al. Photoregulation of DNA transcription by using photoresponsive T7 promoters and clarification of its mechanism[J]. The FEBS Journal, 2010, 277(6):1551-1561. |