[1] Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data[J]. Fifth JPL Airborne Earth Science Workshop, 1995,1(1):23-26.
[2] Harsanyi J C, Chang C I. Hyperspectral image classification and dimensionality reduction:an orthogonal subspace projection approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):779-785.
[3] Nascimento J M, Dias J M. Vertex component analysis:a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):898-910.
[4] Geng X, Xiao Z, Ji L, et al. A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79:211-218.
[5] Winter M E. N-FINDR:an algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]//Michael R. Imaging Spectrometry V:Brisbane:International Society for Optics and Photonics, 1999:266-276.
[6] Sun K, Geng X, Wang P, et al. A fast endmember extraction algorithm based on Gram determinant[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6):1124-1128.
[7] Chang C I, Wu C C, Liu W, et al. A new growing method for simplex-based endmember extraction algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2804-2819.
[8] Geng X, Ji L, Wang F, et al. Statistical Volume Analysis:a new endmember extraction method for multi/hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6100-6109.
[9] Craig M D. Minimum-volume transforms for remotely sensed data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3):542-552.
[10] Berman M, Kiiveri H, Lagerstrom R, et al. ICE:a statistical approach to identifying endmembers in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10):2085-2095.
[11] Zare A, Gader P. Sparsity promoting iterated constrained endmember detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3):446-450.
[12] Geng X, Ji L, Zhao Y, et al. A new endmember generation algorithm based on a geometric optimization model for hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4):811-815.
[13] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788.
[14] Cai D, He X, Han J, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560.
[15] Miao L, Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3):765-777.
[16] Jia S, Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):161-173.
[17] Wang N, Du B, Zhang L. An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):554-569.
[18] Qian Y, Jia S, Zhou J, et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4282-4297.
[19] Wang W, Qian Y. Adaptive L1/2 sparsity-constrained NMF with half-thresholding algorithm for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2618-2631.
[20] Cichocki A, Zdunek R, Amari S-i. Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization[C]//International Conference on Independent Component Analysis and Signal Separation. Springe, 2007:169-176.
[21] Geng X, Ji L, Yang W, et al. The multiplicative update rule for an extension of the iterative constrained endmembers algorithm[J]. International Journal of Remote Sensing, 2017, 38(23):7457-7467. |