[1] Grung M, Lin Y, Zhang H, et al. Pesticide levels and environmental risk in aquatic environments in China:a review[J]. Environment International, 2015, 81:87-97. [2] Li J, Li F D, Liu Q. Sources, concentrations and risk factors of organochlorine pesticides in soil, water and sediment in the Yellow River estuary[J]. Marine Pollution Bulletin, 2015, 100(1):516-522. [3] Chadwick R W, Chang J, Gilligan P H, et al. Effect of lindane on nitroreductase and dechlorinase enzyme activity in the gastrointestinal tract[J]. Toxicology Letters, 1990, 50(2/3):299-308. [4] Yang R Q, Yao T D, Xu B Q, et al. Accumulation features of organochlorine pesticides and heavy metals in fish from high mountain lakes and Lhasa River in the Tibetan Plateau[J]. Environment International, 2007, 33(2):151-156. [5] Hernández A F, Gil F, Lacasaña M, et al. Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage[J]. Food and Chemical Toxicology, 2013, 61:144-151. [6] Li S, Tan H Y, Wang N, et al. The role of oxidative stress and antioxidants in liver diseases[J]. International Journal of Molecular Sciences, 2015, 16(11):26087-26124. [7] Liu Q, Wang Q, Xu C, et al. Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism[J]. Scientific Reports, 2017, 7:46339. [8] Dikshith T S, Srivastava M K, Raizada R B, et al. Interaction of hexachlorocyclohexane and malathion in male Guinea pigs after repeated dermal application[J]. Veterinary and Human Toxicology, 1987, 29(2):138-143. [9] Forrester S J, Kikuchi D S, Hernandes M S, et al. Reactive oxygen species in metabolic and inflammatory signaling[J]. Circulation Research, 2018, 122(6):877-902. [10] Wen X, Wu J M, Wang F T, et al. Deconvoluting the role of reactive oxygen species and autophagy in human diseases[J]. Free Radical Biology and Medicine, 2013, 65:402-410. [11] Butterworth B E, Smith-Oliver T, Earle L, et al. Use of primary cultures of human hepatocytes in toxicology studies[J]. Cancer Research, 1989, 49(5):1075-1084. [12] Singh V K, Sarkar S K, Saxena A, et al. Sub-toxic exposure to lindane activates redox sensitive kinases and impairs insulin signaling in muscle cell culture:The possible mechanism of lindane-induced insulin resistance[J]. Toxicology in Vitro, 2019, 54:98-104. [13] Puri B K, Kingston M C, Monro J A. Fructose-associated hepatotoxicity indexed by the lactate dehydrogenase isoenzyme LDH-5[J]. Medical Hypotheses, 2019, 124:40-41. [14] Deng X B, Zhang F, Rui W, et al. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells[J]. Toxicology in Vitro, 2013, 27(6):1762-1770. [15] Myhre O, Andersen J M, Aarnes H, et al. Evaluation of the probes 2',7'-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation[J]. Biochemical Pharmacology, 2003, 65(10):1575-1582. [16] Zhu R Z, Wang Y J, Zhang L Q, et al. Oxidative stress and liver disease[J]. Hepatology Research, 2012, 42(8):741-749. [17] Han R, Hu M X, Zhong Q, et al. Perfluorooctane sulphonate induces oxidative hepatic damage via mitochondria-dependent and NF-κB/TNF-α-mediated pathway[J]. Chemosphere, 2018, 191:1056-1064. [18] 刘庆菊, 何裕建, 吴丽,等. D-氨基酸诱导的酿酒酵母细胞内活性氧的累积[J]. 中国科学院大学学报, 2018, 35(4):473-480. [19] Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico-Biological Interactions, 2006, 160(1):1-40. [20] Blaser H, Dostert C, Mak T W, et al. TNF and ROS crosstalk in inflammation[J]. Trends in Cell Biology, 2016, 26(4):249-261. [21] Yamamoto K, Rose-John S. Therapeutic blockade of interleukin-6 in chronic inflammatory disease[J]. Clinical Pharmacology & Therapeutics, 2012, 91(4):574-576. [22] He G B, Karin M. NF-κB and STAT3:key players in liver inflammation and cancer[J]. Cell Research, 2011, 21(1):159-168. [23] Barth A, Brucker N, Moro A M, et al. Association between inflammation processes, DNA damage, and exposure to environmental pollutants[J]. Environmental Science and Pollution Research, 2017, 24(1):353-362. [24] Beg A A, Sha W C, Bronson R T, et al. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B[J]. Nature, 1995, 376(6536):167-170. [25] Kiselyov K, Jennings J J Jr, Rbaibi Y, et al. Autophagy, mitochondria and cell death in lysosomal storage diseases[J]. Autophagy, 2007, 3(3):259-262. [26] Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4[J]. The EMBO Journal, 2007, 26(7):1749-1760. [27] 黄莹, 张芳, 丁文军. 肝脏脂质代谢与自噬[J]. 中国科学院大学学报, 2016, 33(4):570-575. [28] Wirth M, Joachim J, Tooze S A. Autophagosome formation:the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage[J]. Seminars in Cancer Biology, 2013, 23(5):301-309. [29] Wang L, Chen M, Yang J, et al. LC3 fluorescent puncta in autophagosomes or in protein aggregates can be distinguished by FRAP analysis in living cells[J]. Autophagy, 2013, 9(5):756-769. [30] Pankiv S, Clausen T H, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. The Journal of Biological Chemistry, 2007, 282(33):24131-24145. [31] Jin M, Zhang Y. Autophagy and inflammatory diseases[J]. Advances in Experimental Medicine and Biology, 2020, 1207:391-400. |