[1] 黄艳艳, 王会军. 2020年全球变暖会创新高吗?[J]. 大气科学学报, 2020, 43(4):585-591. DOI:10.13878/j.cnki.dqkxxb.20200526007. [2] Mishra A K, Singh V P. A review of drought concepts[J]. Journal of Hydrology, 2010, 391(1-2):202-216. DOI:10.1016/j.jhydrol.2010.07.012. [3] 赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价[J]. 生态学报, 2004,24(6):1101-1110. DOI:10.3321/j.issn:1000-0933.2004.06.002. [4] Liu X, Zhu X, Pan Y, et al. Agricultural drought monitoring:Progress, challenges, and prospects[J]. Journal of Geographical Sciences, 2016, 26(6):750-767. DOI:10.1007/s11442-016-1297-9. [5] Brown J F, Wardlow B D, Tadesse T, et al. The vegetation drought response index (VegDRI):a new integrated approach for monitoring drought stress in vegetation[J]. GIScience & Remote Sensing, 2008, 45(1):16-46. DOI:10.2747/1548-1603.45.1.16. [6] Wu J J, Zhou L, Liu M, et al. Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23:397-410. DOI:10.1016/j.jag.2012.11.003. [7] Feng P Y, Wang B, Liu D L, et al. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia[J]. Agricultural Systems, 2019, 173:303-316. DOI:10.1016/j.agsy.2019.03.015. [8] 张建, 谢田晋, 杨万能, 等. 近地遥感技术在大田作物株高测量中的研究现状与展望[J]. 智慧农业(中英文), 2021, 3(1):1-15. DOI:10.12133/j.smartag.2021.3.1.202102-SA033. [9] Svoboda M, Lecomte D, Hayes M, et al. The drought monitor[J]. Bulletin of the American Meteorological Society, 2002, 83(8):1181-1190. DOI:10.1175/1520-0477-83.8.1181. [10] 管晓丹, 郭铌, 黄建平, 等. 植被状态指数监测西北干旱的适用性分析[J]. 高原气象, 2008, 27(5):1046-1053. [11] 杨波, 马苏, 王彬武, 等. 基于MODIS的湖南省农业干旱监测模型[J]. 自然资源学报, 2012, 27(10):1788-1796.DOI:10.11849/zrzyxb.2012.10.016. [12] Rui H, Beaudoing H. README Document for NASA GLDAS Version 2 Data Products[EB/OL]. (2019-08-06)[2021-08-25]. https://data.mint.isi.edu/files/raw-data/GLDAS_NOAH025_M.2.0/doc/README_GLDAS2.pdf. [13] 叶建刚, 申双和, 吕厚荃. 修正帕默尔干旱指数在农业干旱监测中的应用[J]. 中国农业气象, 2009, 30(2):257-261. DOI:10.3969/j.issn.1000-6362.2009.02.028. [14] 刘高鸣, 谢传节, 何天乐, 等. 基于多源数据的农业干旱监测模型构建[J]. 地球信息科学学报, 2019, 21(11):1811-1822. DOI:10.12082/dqxxkx.2019.180666. [15] 杜灵通, 田庆久, 王磊, 等. 基于多源遥感数据的综合干旱监测模型构建[J]. 农业工程学报, 2014, 30(9):126-132. DOI:10.3969/j.issn.1002-6819.2014.09.016. [16] Zambrano F, Lillo-Saavedra M, Verbist K, et al. Sixteen years of agricultural drought assessment of the BioBío region in Chile using a 250 m resolution vegetation condition index (VCI)[J]. Remote Sensing, 2016, 8(6):530. DOI:10.3390/rs8060530. [17] Anyamba A, Tucker C J, Eastman J R. NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event[J]. International Journal of Remote Sensing, 2001, 22(10):1847-1859. DOI:10.1080/01431160010029156. [18] Ji L, Peters A J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices[J]. Remote Sensing of Environment, 2003, 87(1):85-98. DOI:10.1016/S0034-4257(03)00174-3. [19] Nicholson S E, Farrar T J. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall[J]. Remote Sensing of Environment, 1994, 50(2):107-120. DOI:10.1016/0034-4257(94)90038-8. [20] 董师师, 黄哲学. 随机森林理论浅析[J]. 集成技术, 2013, 2(1):1-7. [21] 王玉娜, 李粉玲, 王伟东, 等. 基于无人机高光谱的冬小麦氮素营养监测[J]. 农业工程学报, 2020, 36(22):31-39.DOI:10.11975/j.issn.1002-6819.2020.22.004. [22] 高子恒, 丁炜, 何静. 基于随机森林算法和MODIS数据的日喀则地区土地覆盖分类与动态监测[J]. 安徽农业科学, 2020, 48(16):1-12. DOI:10.3969/j.issn.0517-6611.2020.16.001. [23] 黄芳芳, 雷鸣, 张力, 等. 基于随机森林和决策树的马尾松松材线虫病监测方法[J]. 信息通信, 2019, 32(12):32-36. DOI:10.3969/j.issn.1673-1131.2019.12.011. [24] 姜红, 何清, 曾晓青, 等. 基于随机森林和卷积神经网络的FY-4A号卫星沙尘监测研究[J]. 高原气象, 2021, 40(3):680-689. DOI:10.7522/j.issn.1000-0534.2020.00060. [25] Park S, Im J, Jang E, et al. Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions[J]. Agricultural and Forest Meteorology, 2016, 216:157-169. DOI:10.1016/j.agrformet.2015.10.011. [26] 冯定原,邱新法.农业干旱的成因、指标、时空分布和防旱抗旱对策[J].中国减灾,1995(01):22-27. [27] Hunt E R Jr, Rock B N Jr. Detection of changes in leaf water content using Near-and Middle-Infrared reflectances[J]. Remote Sensing of Environment, 1989, 30(1):43-54. DOI:10.1016/0034-4257(89)90046-1. [28] 孙嵩松, 王喜民. 基于多源遥感数据的干旱监测研究[J]. 山东农业科学, 2019, 51(2):150-157. DOI:10.14083/j.issn.1001-4942.2019.02.029. |