Robust semi-supervised learning model based on model averaging and -divergence
Huizhen WU, Sanguo ZHANG()
CAS Key Laboratory of Big Data Mining and Knowledge Management,School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
Huizhen WU, Sanguo ZHANG. Robust semi-supervised learning model based on model averaging and -divergence[J]. Journal of University of Chinese Academy of Sciences, 2026, 43(1): 14-22.
Bennett K, Demiriz A. Semi-supervised support vector machines[C]//Advances in Neural Information processing systems. Cambridge, MA, USA. MIT Press, 1998:368-374.DOI: 10.5555/340534.340671 .
[2]
Joachims T. Transductive inference for text classification using support vector machines[C]// Proceedings of the Sixteenth International Conference on Machine Learning 99. San Francisco, CA, USA. Morgan Kaufmann Publishers Inc,1999:200-209. DOI: 10.5555/645528.657646 .
[3]
Pan D W, Nie L Q, Kang W X, et al. UAV anomaly detection using active learning and improved S3VM model[C]//2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence(ICSMD). Xi’ an, China. IEEE,2020:253-258. DOI:10.1109/ICSMD50554.2020.9261709 .
[4]
Tao J T, Zhang N N, Chang J Y, et al. Unlabeled sample selection for mineral prospectivity mapping by semi-supervised support vector machine[J]. Natural Resources Research, 2022,31(5): 2247-2269. DOI:10.1007/s11053-022-10093-0 .
[5]
Kawashima T, Fujisawa H. Robust and sparse regression in generalized linear model by stochastic optimization[J]. Japanese Journal of Statistics and Data Science, 2019,2(2): 465-489. DOI:10.1007/s42081-019-00049-9 .
[6]
Hung H, Jou Z Y, Huang S Y. Robust mislabel logistic regression without modeling mislabel probabilities[J]. Biometrics, 2018, 74(1): 145-154. DOI:10.1111/biom.12726 .
[7]
Kawashima T, Fujisawa H. Robust and sparse regression via γ-divergence [J]. Entropy, 2017,19(11):608. DOI:10.3390/e19110608 .
[8]
Laine S, Aila T. Temporal ensembling for semi-supervised learning[EB/OL]. arXiv 2016:1610.02242. (2016-10-07)[2024-04-09]. .
[9]
Tarvainen A, Valpola H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Advances in neural information processing systems. Red Hook, NY, USA. Curran Associates Inc, 2017:1195-1204. DOI: 10.5555/3294771.3294885 .
[10]
Al-Azzam N, Shatnawi I. Comparing supervised and semi-supervised machine learning models on diagnosing breast cancer[J]. Annals of Medicine and Surgery, 2021, 62: 53-64. DOI:10.1016/j.amsu.2020.12.043 .