[1] Maclean J L, Dawe D C, Hardy B, et al. Rice almanac [M]. Manila: International Rice Research Institute (IRRI), 2002.[2] Roger P A, Zimmerman W J, Lumpkin T A. Microbiological management of wetland rice fields[M]. Metting F B J. Soil Microbial Ecology. New York: Dekker, 1993.[3] Armstrong J, Armstrong W. A convective through-flow of gases in Phragmites australis (Cav.) Trin ex Steud[J]. Aquat Bot, 1991, 39: 75-88.[4] Butterbach-Bahl K, Papen H, Rennenberg H. Scanning electron microscopy analysis of the aerenchyma in two rice cultivars[J]. Phyton Ann Bot, 2000, 40:43-55.[5] Armstrong W. The use of polarography in the assay of oxygen diffusing from roots in anaerobic media[J]. Physiologia Plantarium, 1967, 20: 540-553.[6] Chabbi A. Juncus bulbosus as a pioneer species in acidic lignite mining lakes: interactions, mechanism and survival strategies[J]. New Phytol, 1999, 144: 133-142.[7] Pedersen O, Binzer T, Borum J. Sulphide intrusion in eelgrass (Zostera marina L.)[J]. Plant Cell Environ, 2004, 27: 595-602.[8] Chen C C, Dixon J B, Turner F T. Iron coating on rice roots: morphology and models of development[J]. Soil Science Society of American Journal, 1980, 44: 1113-1119.[9] Otte M L, Rozema J, Koster L, et al. Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake[J]. New Phytol, 1989, 111: 309-317.[10] Christensen K K, Jensen K S. Precipitated iron and manganese plaques restrict root uptake of phosphorus in Lobelia dortmanna[J]. Canadian Journal of Botany, 1998, 76: 2158-2163.[11] Greipsson S. Effect of iron plaque on roots of rice on growth of plants in excess zinc and accumulation of phosphorus in plants in excess copper or nickel[J]. Journal of Plant Nutrition, 1995, 18: 1659-1665.[12] Ye Z H, Baker A J M, Wong M H, et al. Copper and nickel uptake, accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface[J]. New Phytologist, 1997, 136: 481-488.[13] Batty L C, Baker A J M, Wheeler B D, et al. The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex Steudel[J]. Annals of Botany, 2000, 86: 647-653.[14] Liu W J, Zhu Y G, Smith F A, et al. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture?[J]. New Phytologist, 2004, 162: 481-488.[15] Liu W J, Zhu Y G, Hu Y, et al. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)[J]. Environ Sci Technol, 2006, 40: 5730-5736.[16] Hu Z Y, Zhu Y G, Li M, et al. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings[J]. Environment Pollution, 2007, 147: 387-393.[17] Weiss J V, Emerson D, Backer S M, et al. Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycle[J]. Biogeochemistry, 2003, 64: 77-96.[18] Alberda T H. Growth and root development of lowland rice and its relation to oxygen supply[J]. Plant Soil, 1953, 5:1-28.[19] Revsbech N P, Pedersen O, Reichardt W, et al. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions[J]. Biol Fertil Soils, 1999, 29: 379-385.[20] St-Cyr L, Crowder A A. Factors affecting iron plaque on the roots of Phragmites australis (Cav.) Trin ex Steudel[J]. Plant and Soil, 1989, 116: 85-93.[21] Crowder A A. Formation of manganese oxide plaque on rice roots in solution culture under varying pH and manganese (Mn2+) concentration conditions[J]. Journal of Plant Nutrition, 1993, 16: 589-599.[22] Zhang X K, Zhang F S, Mao D R. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): zinc uptake by Fe-deficient rice[J]. Plant and Soil, 1998, 202: 33-39.[23] Chen Z, Zhu Y G, Liu W J, et al. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots[J]. New Phytologist, 2005, 165: 91-97.[24] Taylor G J, Crowder A A, Rodden, R. Formation and morphology of an iron plaque on the roots of Typha Latifolia L. grown in solution culture[J]. American Journal of Botany, 1984, 71: 666-675.[25] Bacha R E, Hossner L R. Characteristics of coatings formed on rice roots as affected by iron and manganese additions[J]. Soil Science Society of American Journal, 1977, 41: 931-935.[26] Hansel C M, Fendorf S, Sutton S, et al. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants[J]. Environmental Science and Technology, 2001, 35: 3863-3868.[27] Hu Z Y, Xu C K. Soil sulfur and environmental quality[M]. Chen H M. Behaviors of Chemical Substances in Soils and Environmental Quality. Beijing: Science Press, 2002: 283-307.[28] Haneklaus S, Bloem E, Schnug E. The global sulphur cycle and its links to plant environment[M]. Abrol Y P, Ahmad A. Sulphur in Plants. Netherlands, Dordrecht: Kluwer Academic Publishers, 2003:1-28.[29] Zhou W, He P, Li S, et al. Mineralization of organic sulfur in paddy soils under flooded[J]. Geoderma, 2005, 125: 85-93.[30] Wind T, Conrad R. Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil[J].FEMS Microbiology Ecology, 1995, 18: 257-266.[31] Murase J, Kimura M. Anaerobic reoxidation of Mn2-, Fe2-, S0 and S2- in submerged paddy soils[J]. Biology and Fertility of Soils, 1997, 25: 302-306.[32] Li Q K. Paddy soils of China[M]. Beijing: Science Press, 1992: 155-273, 380-432.[33] Hu Z Y, Haneklaus S, Wang S P, et al. Comparison of mineralization and distribution of soil sulfur fractions in the rhizosphere of oilseed rape and of rice[J]. Communications of Soil Science and Plant Analysis, 2003, 34: 2234-2257.[34] Qu D, Zhang Y P, Schnell S, et al. Reduction of iron oxides and its effect on microbial processes in anaerobic paddy soil[J]. Acta Pedologica Sinica, 2003, 40: 858-863.[35] Gao M X, Hu Z Y, Wang G D, et al. Effect of elemental sulfur supply on cadmium uptake into rice seedlings when cultivated in low and excess cadmium soils[J]. Communications in Soil Science and Plant Analysis, 2010, 41: 990-1003.[36] Fan J L, Hu Z Y, Ziadi N, et al. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.)[J]. Environmental Pollution, 2010, 158: 409-415.[37] Gao M X, Hu Z Y, Wang G D. The extraction and elemental analysis of iron plaque from the surface of rice roots[J]. Environmental Chemistry, 2007, 26(3): 331-334(in Chinese). 高明霞,胡正义,王国栋. 水稻根表胶膜的浸提及其元素测定方法[J]. 环境化学,2007,26(3):331-334.[38] Taylor G J, Crowder A A. Use of DCB technique for extraction of hydrous iron oxides from roots of wetland plants[J]. American Journal of Botany, 1983, 70: 1254-1257.[39] Rahman M A, Hasegawa H, Ueda K, et al. Arsenic uptake by aquatic macrophyte Spirodela polyrhiza L.: Interactions with phosphate and iron[J]. Journal of Hazardous Materials, 2008, 160: 356-361.[40] Soil Survey Staff. Keys to soil taxonomy (7th ed) [M]. Washington: USDA/SCS, 1996.[41] Liu W J, Zhu Y G, Smith F A, et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture?[J]. Journal of Experimental Botany, 2004, 55: 1707-1713.[42] Lu R K. Physic-chemistry analysis of soils[M]. Beijing: China Agricultural Scientific and Technological Press, 1999: 139-141.[43] Nation J L. A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy[J]. Biotechnic and Histochemistry, 1983, 58: 347-351.[44] Xu B S. Biological electron microscope[M]. China: Forestry Press, 2000: 91-109.[45] Povidisa K, Delefosse M, Holmer M. The formation of iron plaques on roots and rhizomes of the seagrass Cymodocea serrulata (R Brown) Ascherson with implications for sulphide intrusion[J]. Aquatic Botany, 2009, 90: 303-308[46] Armstrong J, Armstrong J. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence[J]. Annals of Botany, 2005, 96: 625-638.[47] Schmidt H, Eickhorst T, Tippktter R. Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis[J]. Plant Soil, 2011, 341: 221-232.[48] Bravin M N, Travassac F, Floch M L, et al. Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): a microcosm study[J]. Plant Soil, 2008, 312: 207-218.[49] Gensen S I, Kühl M, Glud G, et al. Oxic microzones and radial oxygen loss from roots of Zostera marina[J]. Mar Ecol Prog Ser, 2005, 293: 49-58.[50] Chiu, C Y, Chou C H. Oxidation in the rhizosphere of mangrove kandelia candel seedlings sail sci[J]. Plant Nutr, 1993, 39(4): 725-731.[51] Kirk G J D, Bajita J B. Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice[J]. New Phytol, 1995, 131: 129-137.[52] Kirk G J D,Begg C B M,Solivas J L.The chemistry of the lowland rice rhizosphere[J].Plant Soil,1993,155/156:83-86.[53] Mendelssohn I A, Postek T. Elemental analysis of deposits on the roots of spartina alterniflora loisel[J]. American Journal Botany, 1982, 69: 904-912. |