[1] 李二森, 朱述龙, 周晓明, 等. 高光谱图像端元提取算法研究进展与比较[J]. 遥感学报, 2011, 15(4):659-679. [2] Boardman J W. Automating spectral unmixing of AVIRIS data using convex geometry concepts[J]. Summaries of the Fourth Annual JPL Airborne Geoscience Workshop, JPL Publication, 1993, 1:11-14. [3] Winter M E. N-FINDR:an algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]//International Symposium on Optics Science, Engineering, and Instrumentation. Proc SPIE 3753, Imaging Spectrometry V, Denver, CO, USA. 1999, 3753:266-275. [4] 杨可明, 魏华锋, 刘飞, 等. 以光谱信息熵改进的N-FINDR高光谱端元提取算法[J]. 地球信息科学学报, 2015, 17(8):979-985. [5] Chang C I, Wu C C, Liu W, et al. A new growing method for simplex-based endmember extraction algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2804-2819. [6] Nascimento J M P, Dias J M B. Vertex component analysis:a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):898-910. [7] Geng X R, Xiao Z Q, Ji L Y, et al. A Gaussian elimination based fast endmember extraction algorithm for hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79:211-218. [8] Sun K, Geng X R, Wang P S, et al. A fast endmember extraction algorithm based on gram determinant[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6):1124-1128. [9] Wang X Y, Zhong Y F, Xu Y, et al. Saliency-based endmember detection for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):3667-3680. [10] 严阳, 华文深, 崔子浩, 等. 高光谱分类体积的端元提取[J]. 激光与光电子学进展, 2018, 55(9):446-451. [11] 杨随心, 耿修瑞, 杨炜暾, 等. 一种基于谱聚类算法的高光谱遥感图像分类方法[J]. 中国科学院大学学报, 2019, 36(2):267-274. [12] Craig M D. Minimum-volume transforms for remotely sensed data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3):542-552. [13] Berman M, Kiiveri H, Lagerstrom R, et al. ICE:a statistical approach to identifying endmembers in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10):2085-2095. [14] Zare A, Gader P. Sparsity promoting iterated constrained endmember detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3):446-450. [15] Miao L D, Qi H R. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3):765-777. [16] Hendrix E M T, Garcia I, Plaza J, et al. A new minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7):2744-2757. [17] Chan T H, Chi C Y, Huang Y M, et al. A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing[J]. IEEE Transactions on Signal Processing, 2009, 57(11):4418-4432. [18] Geng X R, Ji L Y, Zhao Y C, et al. A new endmember generation algorithm based on a geometric optimization model for hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4):811-815. [19] Chang C I, Du Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):608-619. [20] Swayze G, Clark R N, Kruse F, et al. Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada[C]//Summaries of the Third Annual JPL Airborne Geoscience Workshop. Denver, CO:JPL Publication, 1992:47-49. |