[1] Brenner A R, Essen H, Stilla U. Representation of stationary vehicles in ultra-high resolution SAR and turntable ISAR images[C]//EUSAR 2012; 9th European Conference on Synthetic Aperture Radar. Nuremberg, Germany. VDE: 147-150. [2] El-Arnauti G, Saalmann O, Brenner A R. Ultra-high resolution airborne experiments with a new Ka-band SAR sensor[C]//2017 European Radar Conference (EURAD). October 11-13, 2017. Nuremberg, Germany. IEEE, 2017: 409-412. DOI:10.23919/eurad.2017.8249234. [3] Dupuis X, Martineau P. Very high resolution circular SAR imaging at X band[C]//2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada. IEEE,: 930-933. DOI:10.1109/IGARSS.2014.6946578. [4] Mishra S, Singh N, Dhar J, et al. A GaAs based miniaturized C-band double balanced resistive IQ modulator for synthetic aperture radar (SAR) applications[C]//2019 IEEE Recent Advances in Geoscience and Remote Sensing: Technologies, Standards and Applications. Kochi, India. IEEE,: 57-60. DOI:10.1109/TENGARSS48957.2019.8976064. [5] Yahav N, Efendowicz A. Broadband high linearity IQ modulator for direct conversion transmitters[C]//2016 46th European Microwave Conference (EuMC). London, UK. IEEE: 1019-1022. [6] Zhu Z W, Leung H, Huang X P. Challenges in reconfigurable radio transceivers and application of nonlinear signal processing for RF impairment mitigation[J]. IEEE Circuits and Systems Magazine, 2013, 13(1): 44-65. DOI:10.1109/MCAS.2012.2237143. [7] Luo J, Kortke A, Keusgen W, et al. A novel adaptive calibration scheme for frequency-selective I/Q imbalance in broadband direct-conversion transmitters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(2): 61-65. DOI:10.1109/TCSII.2012.2235735. [8] Khandelwal A, Verma A. A novel gain, phase and offset calibration scheme for wideband direct-conversion transmitters[C]//2015 IEEE 81st Vehicular Technology Conference. Glasgow, UK. IEEE,: 1-5. DOI:10.1109/VTCSpring.2015.7145633. [9] Fawzy A, Sun S M, Lim T J, et al. Iterative learning control for pre-distortion design in wideband direct-conversion transmitters[C]//GLOBECOM 2020:2020 IEEE Global Communications Conference. Taipei, China. IEEE,: 1-6. DOI:10.1109/GLOBECOM42002.2020.9322378. [10] Zhu Z W, Huang X P, Leung H. Joint I/Q mismatch and distortion compensation in direct conversion transmitters[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2941-2951. DOI:10.1109/TCOMM.2013.050313.121256. [11] Zhu Z W, Huang X P, Caron M, et al. Blind self-calibration technique for I/Q imbalances and DC-offsets[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(6): 1849-1859. DOI:10.1109/TCSI.2013.2290826. [12] Arriaga-Trejo I A. Estimation of the channel and I/Q imbalances with zero correlation zone sequences and superimposed training[C]//2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems. Tel-Aviv, Israel. IEEE,: 1-6. DOI:10.1109/COMCAS44984.2019.8958069. [13] Huang X J, Zhang J A, Guo Y J. Joint transmitter and receiver I/Q imbalance estimation in presence of carrier frequency offset[C]//2015 15th International Symposium on Communications and Information Technologies (ISCIT). Nara, Japan. IEEE,: 209-212. DOI:10.1109/ISCIT.2015.7458344. [14] 陈雷, 岳光荣, 唐俊林, 等. 基于数字预失真的发射机I/Q不平衡矫正[J]. 电子与信息学报, 2017, 39(4): 847-853. DOI:10.11999/JEIT160581. [15] 陆必应, 梁甸农. 大时带积线性调频信号源幅相误差分析与校正[J]. 现代雷达, 2004, 26(10): 38-40, 60. DOI:10.16592/j.cnki.1004-7859.2004.10.012. |