欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2021, Vol. 38 ›› Issue (6): 729-734.DOI: 10.7523/j.issn.2095-6134.2021.06.002

• 数学与物理 • 上一篇    下一篇

复Grassmann流形中全实曲面的构造

焦晓祥, 辛嘉麟   

  1. 中国科学院大学数学科学学院, 北京 100049
  • 收稿日期:2019-11-20 修回日期:2020-02-04 发布日期:2021-11-16
  • 通讯作者: 辛嘉麟
  • 基金资助:
    Supported by the National Natural Science Foundation of China (11871450)

Construction of totally real surfaces in complex Grassmannians

JIAO Xiaoxiang, XIN Jialin   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-11-20 Revised:2020-02-04 Published:2021-11-16
  • Supported by:
    Supported by the National Natural Science Foundation of China (11871450)

摘要: 给出复Grassmann流形G(2,n+2)的全实曲面的一种构造方法,也就是把G(2,n+2)看作$\mathbb{H}$Pn+1中极小子流形Qn+1的商,并证明G(2,n+2)中的曲面可以水平提升到Qn+1中当且仅当它是全实的。

关键词: Grassmann流形, 全实曲面, 水平提升

Abstract: We present a construction of the complex Grassmannian G(2,n+2) as a quotient of some minimal submanifold Qn+1 of $\mathbb{H}$Pn+1, then show that a surface in G(2,n+2) can be horizontally lifted to Qn+1 if and only if it is totally real.

Key words: Grassmannian, totally real surface, horizontal lift

中图分类号: