[1] Itô K.Differential equations determining a Markoff process[J]. Pan-Japan Math Coll, 1942, 244(1077): 1352-1400. [2] Arnold L.Stochastic differential equations: theory and applications[M]. New York: Wiley, 1974. [3] Zhu W Q, Cai G Q.Introduction to stochastic dynamics in Chinese[M]. Beijing: Science Press Bijing, 2017. [4] Feng K.On difference schemes and symplectic geometry[C/OL] // Proceedings of the 1984 Beijing Symposium on differential geometry & differential equations. Beijing: Science Press Beijing, 1985: 42-58 (1985) [2024-10-18] . https://mathscinet.ams.org/mathscinet/article?mr=824483. [5] Feng K, Qin M Z.Symplectic geometric algorithms for Hamiltonian systems in Chinese[M]. Hangzhou: Zhejiang science and technology publishing house, 2003. [6] Hairer E, Lubich C, Wanner G.Symplectic integration of Hamiltonian systems[M] // Hairer E, Lubich C, Wanner G. Geometric numerical integration. Berlin: Springer, 2006: 179-236. DOI: 10.1007/3-540-30666-8_6. [7] Bismut J M, Gross L, Krickeberg K. Ecole d'Eté de Probabilités de Saint-Flour X—1980[M/OL]. Berlin: Springer, 1982 [2024-10-18] . https://link.springer.com/book/10.1007/BFb0095617. [8] Milstein G N, Repin Y M, Tretyakov M V.Symplectic integration of Hamiltonian systems with additive noise[J]. SIAM Journal on Numerical Analysis, 2002a, 39(6): 2066-2088. DOI: 10.1137/S0036142901387440. [9] Milstein G N, Repin Y M, Tretyakov M V.Numerical methods for stochastic systems preserving symplectic structure[J]. SIAM Journal on Numerical Analysis, 2002b, 40(4): 1583-1604. DOI: 10.1137/S0036142901395588. [10] Wang L J.Variational integrators and generating functions for stochastic Hamiltonian systems[D]. Karlsruhe: KIT Scientific Publishing, 2007. DOI: 10.5445/KSP/1000007007. [11] Deng J, Anton C, Wong Y S.High-order symplectic schemes for stochastic Hamiltonian systems[J]. Communications in Computational Physics, 2014, 16(1): 169-200. DOI: 10.4208/cicp.311012.191113a. [12] Bou-Rabee N, Owhadi H.Stochastic variational integrators[J]. IMA Journal of Numerical Analysis, 2008, 29(2): 421-443. DOI: 10.1093/imanum/drn018. [13] Hong J L, Sun L Y.Symplectic integration of stochastic Hamiltonian systems[M]. Singapore: Springer, 2022. DOI: 10.1007/978-981-19-7670-4. [14] Chen R T Q, Rubanova Y, Bettencourt J, et al. Neural ordinary differential equations[EB/OL].2019 : 1806.07366v5.(2018-07-19) [2024-10-18] . https://arxiv.org/abs/1806.07366v5. [15] Greydanus S, Dzamba M, Yosinski J. Hamiltonian neural networks[EB/OL].2019: 1906.01563v3.(2019-06-04) [2024-10-18] . https://arxiv.org/abs/1906.01563v3. [16] Chen Z D, Zhang J Y, Arjovsky M, et al. Symplectic recurrent neural networks[EB/OL].2020: 1909.13334v2.(2019-09-29) [2024-10-18] . https://arxiv.org/abs/1909.13334v2. [17] Zhu A Q, Jin P Z, Tang Y F.Deep Hamiltonian neural networks based on symplectic integrators in Chinese[J]. Mathematica Numerica Sinica, 2020, 42(3): 370-384. DOI: 10.12286/jssx.2020.3.370. [18] Tong Y J, Xiong S Y, He X Z, et al.Symplectic neural networks in Taylor series form for Hamiltonian systems[J]. Journal of Computational Physics, 2021, 437: 110325. DOI: 10.1016/j.jcp.2021.110325. [19] David M, Méhats F.Symplectic learning for Hamiltonian neural networks[J]. Journal of Computational Physics, 2023, 494: 112495. DOI: 10.1016/j.jcp.2023.112495. [20] Jin P Z, Zhang Z, Zhu A Q, et al.SympNets: intrinsic structure preserving symplectic networks for identifying Hamiltonian systems[J]. Neural Networks, 2020, 132: 166-179. DOI: 10.1016/j.neunet.2020.08.017. [21] Xiong S Y, Tong Y J, He X Z, et al. Nonseparable symplectic neural networks[EB/OL].2022: 2010.12636v3.(2020-10-23) [2024-10-18] . https://arxiv.org/abs/2010.12636v3. [22] Bertalan T, Dietrich F, Mezić I, et al.On learning Hamiltonian systems from data[J]. Chaos (Woodbury, N.Y.), 2019, 29(12): 121107. DOI: 10.1063/1.5128231. [23] Sæmundsson S, Terenin A, Hofmann K, et al. Variational integrator networks for physically structured embeddings[EB/OL].2020: 1910.09349v2.(2019-10-21) [2024-10-18] . https://arxiv.org/abs/1910.09349v2. [24] Chen R Y, Tao M L. Data-driven prediction of general Hamiltonian dynamics via learning exactly-symplectic maps[EB/OL].2021: 2103.05632v2.(2021-03-09) [2024-10-18] . https://arxiv.org/abs/2103.05632v2. [25] Chen Y H, Matsubara T, Yaguchi T. Neural symplectic form: learning Hamiltonian equations on general coordinate systems[C/OL] // Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: Curran Associates, 2024: 16659 - 16670 (2024) [2024-10-18] . https://dl.acm.org/doi/10.5555/3540261.3541535. [26] Liu X Q, Xiao T S, Si S, et al. Neural SDE: stabilizing neural ODE networks with stochastic noise[EB/OL].2019: 1906.02355.(2019-06-05) [2024-10-18] . https://arxiv.org/abs/1906.02355. [27] Tzen B, Raginsky M. Neural stochastic differential equations: Deep latent gaussian models in the diffusion limit[EB/OL].2019: 1905.09883v2.(2019-05-23) [2024-10-18] . https://arxiv.org/abs/1905.09883v2. [28] Ryder T, Golightly A, McGough A S, et al. Black-box variational inference for stochastic differential equations[EB/OL].2018: 1802.03335v3.(2018-02-09) [2024-10-18] . https://arxiv.org/abs/1802.03335v3. [29] Opper M.Variational inference for stochastic differential equations[J]. Annalen Der Physik, 2019, 531(3): 1-9. DOI: 10.1002/andp.201800233. [30] Dai M, Duan J Q, Hu J Y, et al.Variational inference of the drift function for stochastic differential equations driven by Lévy processes[J]. Chaos (Woodbury, N.Y.), 2022, 32(6): 061103. DOI: 10.1063/5.0095605. [31] Dietrich F, Makeev A, Kevrekidis G, et al.Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learning[J]. Chaos (Woodbury, N.Y.), 2023, 33(2): 023121. DOI:10.1063/5.0113632. [32] Fang C, Lu Y B, Gao T, et al.An end-to-end deep learning approach for extracting stochastic dynamical systems with α-stable Lévy noise[J]. Chaos (Woodbury, N.Y.), 2022, 32(6): 063112. DOI: 10.1063/5.0089832. [33] Yang L X, Gao T, Lu Y B, et al.Neural network stochastic differential equation models with applications to financial data forecasting[J]. Applied Mathematical Modelling, 2023, 115: 279-299. DOI: 10.1016/j.apm.2022.11.001. [34] Deng R Z, Chang B, Brubaker M A, et al. Modeling continuous stochastic processes with dynamic normalizing flows[EB/OL].2021: 2002.10516v4.(2020-02-24) [2024-10-18] . https://arxiv.org/abs/2002.10516v4. [35] Urain J, Ginesi M, Tateo D, et al.ImitationFlow: learning deep stable stochastic dynamic systems by normalizing flows[C] // 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). October 24 - January 24, 2021, Las Vegas, NV, USA. IEEE, 2020: 5231-5237. DOI: 10.1109/IROS45743.2020.9341035. [36] Papamakarios G, Nalisnick E, Rezende D J, et al. Normalizing flows for probabilistic modeling and inference[EB/OL].2021: 1912.02762v2.(2019-12-05) [2024-10-18] . https://arxiv.org/abs/1912.02762v2. [37] Guo L, Wu H, Zhou T.Normalizing field flows: solving forward and inverse stochastic differential equations using physics-informed flow model[J]. Journal of Computational Physics, 2022, 461: 111202. DOI: 10.1016/j.jcp.2022.111202. [38] Li Y, Duan J Q.A data-driven approach for discovering stochastic dynamical systems with non-Gaussian Lévy noise[J]. Physica D: Nonlinear Phenomena, 2021, 417: 132830. DOI: 10.1016/j.physd.2020.132830. [39] Chen X L, Yang L, Duan J Q, et al.Solving inverse stochastic problems from discrete particle observations using the Fokker-Planck equation and physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2021, 43(3): B811-B830. DOI: 10.1137/20M1360153. [40] Solin A, Tamir E, Verma P. Scalable inference in SDEs by direct matching of the Fokker-Planck-Kolmogorov equation[EB/OL].2021: 2110.15739.(2021-10-29) [2024-10-18] . https://arxiv.org/abs/2110.15739. [41] Lu Y B, Li Y, Duan J Q.Extracting stochastic governing laws by non-local Kramers-Moyal formulae[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 380(2229). DOI: 10.1098/rsta.2021.0195. [42] Chen X L, Wang H, Duan J Q.Detecting stochastic governing laws with observation on stationary distributions[J]. Physica D: Nonlinear Phenomena, 2023, 448: 133691. DOI: 10.1016/j.physd.2023.133691. [43] Wang Z P, Wang L J. Learning parameters of a class of stochastic Lotka-Volterra systems with neural networks[EB/OL]. Journal of University of Chinese Academy of Sciences. (2023-03-21) [2024-10-18] . DOI: 10.7523/j.ucas.2023.012. [44] Wang Z P, Wang L J, Cao Y Z. Learning a class of stochastic differential equations via numerics-informed Bayesian denoising[J/OL]. International Journal for Uncertainty Quantification, 2024. [2024-10-18] . DOI: 10.1615/Int.J.UncertaintyQuantification.2024052020. [45] Cheng X P, Wang L J. Learning stochastic Hamiltonian systems via neural network and numerical quadrature formulae[J/OL]. Journal of University of Chinese Academy of Sciences. (2024-09-30) [2024-10-18] . DOI: 10.7523/j.ucas.2024.074. [46] Cheng X P, Wang L J, Cao Y Z.Quadrature based neural network learning of stochastic Hamiltonian systems[J]. Mathematics, 2024, 12(16): 2438. DOI: 10.3390/math12162438. [47] Chen Y, Xiu D B.Learning stochastic dynamical system via flow map operator[J]. Journal of Computational Physics, 2024, 508: 112984. DOI: 10.1016/j.jcp.2024.112984. [48] Kloeden P E, Platen E.Numerical solution of stochastic differential equations[M]. Berlin: Springer-Verlag, 1992. DOI: 10.1007/978-3-662-12616-5. |