欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2011, Vol. 28 ›› Issue (5): 573-582.DOI: 10.7523/j.issn.2095-6134.2011.5.002

• 论文 • 上一篇    下一篇

复格拉斯曼流形G(2,5)中的调和2-球面

李康, 焦晓祥   

  1. 中国科学院研究生院数学科学学院, 北京 100049
  • 收稿日期:2010-10-18 修回日期:2010-12-08 发布日期:2011-09-15
  • 基金资助:

    Supported by the NSFC (11071248), and the Knowledge Innovation Program of the Chinese Academy of Sciences

Harmonic two-spheres in the complex Grassmann manifold G(2,5)

LI Kang, JIAO Xiao-Xiang   

  1. School of Mathematical Sciences, Graduate University, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2010-10-18 Revised:2010-12-08 Published:2011-09-15

摘要:

运用调和序列和活动标架研究复格拉斯曼流形G(2,5)中的调和2-球面.通过S2上全纯微分形式的构造, 简化G(2,5)中沿调和2-球面的活动标架,并且给出高斯曲率的上界估计.

关键词: 调和2-球面, 高斯曲率, 全纯微分形式, 调和序列

Abstract:

We use the methods of harmonic sequences and moving frames to study the harmonic two-spheres in the complex Grassmann manifold G(2,5). Through the construction of holomorphic differential forms on S2, we can simplify the moving frames along a harmonic two-sphere in G(2,5). Finally, we give some upper bounds of the Gauss curvature of minimal two-spheres in G(2,5).

Key words: harmonic two-sphere, Gaussian curvature, holomorphic differential forms, harmonic sequence

中图分类号: