[1] Federici G, Skinner C H, Brooks J N, et al. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors[J]. Nucl Fusion, 2001, 41(12):1967-2137. [2] Küppers J. The hydrogen surface chemistry of carbon as a plasma facing material[J]. Surface Science Reports, 1995, 22(7/8):249-321. [3] Roth J, Tsitrone E, Loarer T, et al. Tritium inventory in ITER plasma-facing materials and tritium removal procedures[J]. Plasma Physics and Controlled Fusion, 2008, 50(10):103001. [4] Scotti F, Soukhanovskii V A, Bell R E, et al. Core transport of lithium and carbon in ELM-free discharges with lithium wall conditioning in NSTX[J]. Nucl Fusion, 2013, 53(8):083001. [5] Abdou M A, Team T A, Ying A, et al. On the exploration of innovative concepts for fusion chamber technology[J]. Fusion Eng Des, 2001, 54(2):181-247. [6] Chopra O K, Tortorelli P F. Compatibility of materials for use in liquid-metal blankets of fusion reactors[J]. J Nucl Mater, 1984, 123(1-3):1201-1212. [7] Chopra O K, Smith D L. Influence of temperature and lithium purity on corrosion of ferrous alloys in a flowing lithium environment[J]. J Nucl Mater, 1986, 141-143(Part 2):584-591. [8] Flament T, Tortorelli P, Coen V, et al. Compatibility of materials in fusion first wall and blanket structures cooled by liquid metals[J]. J Nucl Mater, 1992, 191-194(Part A):132-138. [9] Popovich V V, Shtykalo I G, Chaevskii M I. Effect of lithium on the mechanical properties of armco iron[J]. Soviet Materials Science:a Transl of Fiziko-Khimicheskaya Mekhanika Materialov/Academy of Sciences of the Ukrainian SSR, 1967, 3(2):88-93. [10] Chopra O, Smith D. Low-cycle fatigue behavior of HT9 alloy in a flowing-lithium environment[C]//Davis J W, Michel D J. Proceedings of the topical conference on ferritic alloys for use in nuclear energy technologies. State of Utah:Snowbird Press, 1984:8. [11] Mustari A P A, Takahashi M. Metallurgical analysis of corroded bellows of bellow-sealed valve in lithium flow system[J]. Fusion Eng Des, 2013, 88(4):202-208. [12] Webb E B, Grest G S, Heine D R. Precursor film controlled wetting of Pb on Cu[J]. Phys Rev Lett, 2003, 91(23):236102. [13] Palafox-Hernandez J P, Laird B B, Asta M. Atomistic characterization of the Cu-Pb solid-liquid interface[J]. Acta Mater, 2011, 59(8):3137-3144. [14] Gan X L, Xiao S F, Deng H Q, et al. Atomistic simulations of the Fe(001)-Li solid-liquid interface[J]. Fusion Eng Des, 2014, 89(12):2894-2901. [15] Mendelev M I, Han S, Srolovitz D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron[J]. Philos Mag, 2003, 83(35):3977-3994. [16] Tsai D H. The virial theorem and stress calculation in molecular dynamics[J]. J Chem Phys, 1979, 70(3):1375-1382. [17] Nichol A, Ackland G J. Property trends in simple metals:an empirical potential approach[J]. Phy Rev B, 2016, 93(18):184101. [18] Plimpton S. Fast Parallel Algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1):1-19. [19] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Model Simul Mater Sci Eng, 2010, 18(1):015012. [20] Honeycutt J D, Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. J Phys Chem, 1987, 91(19):4950-4963. [21] Stukowski A, Bulatov V V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces[J]. Model Simul Mater Sci Eng, 2012, 20(8):085007. [22] Hagen A B, Snartland B D, Thaulow C. Temperature and orientation effects on the deformation mechanisms of α-Fe micropillars[J]. Acta Mater, 2017, 129:398-407. [23] Feng Y X, Shang J X, Qin S J, et al. Twin and dislocation mechanisms in tensile W single crystal with temperature change:a molecular dynamics study[J]. Phys Chem Chem Phys, 2018, 20(26):17727-17738. [24] Molnar D, Binkele P, Hocker S, et al. Atomistic multiscale simulations on the anisotropic tensile behaviour of copper-alloyed alpha-iron at different states of thermal ageing[J]. Philos Mag, 2012, 92(5):586-607. [25] Friák M, Šob M. Ab initio study of the bcc-hcp transformation in iron[J]. Phys Rev B, 2008, 77(17):174117. [26] Zhu T, Li J, Samanta A, et al. Temperature and strain-rate dependence of surface dislocation nucleation[J]. Phys Rev Lett, 2008, 100(2):025502. [27] Zuo L, Ngan A H W. Molecular dynamics study on compressive yield strength in Ni3Al micro-pillars[J]. Phil Mag Lett, 2006, 86(6):355-365. [28] Hepburn D J, MacLeod E, Ackland G J. Transition metal solute interactions with point defects in fcc iron from first principles[J]. Phys Rev B, 2015, 92(1):014110. [29] Devi E A, Chinnappan R, Sundar C S. First-principles study of interaction energies of atomic defects in bcc ferromagnetic iron[J]. Phys Rev B, 2018, 98(14):144104. [30] Weinberger C R, Cai W. Plasticity of metal nanowires[J]. Journal of Materials Chemistry, 2012, 22(8):3277-3292. [31] Rabkin E, Nam H S, Srolovitz D J. Atomistic simulation of the deformation of gold nanopillars[J]. Acta Mater, 2007, 55(6):2085-2099. [32] Adams J J, Agosta D S, Leisure R G, et al. Elastic constants of monocrystal iron from 3 to 500 K[J]. J Appl Phys, 2006, 100(11):113530. [33] Černý M, Šesták P, Pokluda J. Strength of bcc crystals under combined shear and axial loading from first principles[J]. Comp Mater Sci, 2012, 55:337-343. [34] Kotrechko S, Ovsjannikov A. Temperature dependence of the yield stress of metallic nano-sized crystals[J]. Philos Mag, 2009, 89(33):3049-3058. |