[1] Ying Z Y, Li H.IMM-SLAMMOT: Tightly-coupled SLAM and IMM-based multi-object tracking[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(2): 3964-3974. DOI:10.1109/TIV.2023.3346040. [2] Pei J D, Wang Y D, Deng S R, et al.Space-based maneuvering target tracking algorithm based on IMM[C]//Advances in Guidance, Navigation and Control. Singapore: Springer, 2025: 157-167. DOI:10.1007/978-981-96-2260-3_16. [3] Singer R A. Estimating optimal tracking filter performance for manned maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(4): 473-483. DOI:10.1109/TAES.1970.310128. [4] Zhao Z W, Chen H.Multi-maneuvering target tracking based on a Gaussian process[J]. Sensors, 2024, 24(22): 7270. DOI:10.3390/s24227270 [5] Dong S L, Liu M Q, Wu Z G.A survey on hidden Markov jump systems: Asynchronous control and filtering[J]. International Journal of Systems Science, 2023, 54(6): 1360-1376. DOI:10.1080/00207721.2023.2171710. [6] Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients[J]. IEEE Transactions on Automatic Control, 1988, 33(8): 780-783. DOI:10.1109/9.1299. [7] 曾浩,母王强,蒋阳,等. 模型参数自适应的低复杂度 ATPM-VSIMM 算法[J]. 通信学报,2023, 44(9): 25-35. DOI:10.11959/j.issn.1000-436x.2023186. [8] 汪晋, 苏洪涛, 汪圣利, 等. 基于SLSTM网络的两级修正机动目标跟踪方法[J]. 西安电子科技大学学报, 2025, 52(1): 37-49. DOI:10.19665/j.issn1001-2400.20241015. [9] Hang G, Wang J W.Adaptive modified transition probability IMM algorithm for maneuvering target tracking[C]//2024 9th International Conference on Electronic Technology and Information Science (ICETIS). May 17-19, 2024, Hangzhou, China. IEEE, 2024: 427-431. DOI:10.1109/ICETIS61828.2024.10593671. [10] Xu W W, Xiao J K, Xu D L, et al.An adaptive IMM algorithm for a PD radar with improved maneuvering target tracking performance[J]. Remote Sensing, 2024, 16(6): 1051. DOI:10.3390/rs16061051. [11] Lee I H, Park C G.A two-stage transition correction function for adaptive Markov matrix in IMM algorithm[C]//2022 25th International Conference on Information Fusion (FUSION). July 4-7, 2022, Linköping, Sweden. IEEE, 2022: 1-8. DOI:10.23919/FUSION49751.2022.9841371. [12] 赵申奇. 基于卡尔曼滤波和神经网络的水下目标跟踪研究[D]. 桂林: 桂林电子科技大学, 2024. [13] Elkateb S, Métwalli A, Shendy A, et al.Machine learning and IoT-Based predictive maintenance approach for industrial applications[J]. Alexandria Engineering Journal, 2024, 88: 298-309. DOI:10.1016/j.aej.2023.12.065. [14] Kailash Varma N M, Ahmed M I, Madhusudhan G, et al. Machine learning-enabled smart transit: Real-time bus tracking system for enhanced urban mobility[C]//2024 Intelligent Systems and Machine Learning Conference (ISML). May 4-5, 2024, Hyderabad, India. IEEE, 2025: 520-524. DOI:10.1109/ISML60050.2024.11007439. [15] Malashin I, Tynchenko V, Gantimurov A, et al.Applications of long short-term memory (LSTM) networks in polymeric sciences: A review[J]. Polymers, 2024, 16(18): 2607. DOI:10.3390/polym16182607. [16] Aftab W, Mihaylova L.A learning Gaussian process approach for maneuvering target tracking and smoothing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 278-292. DOI:10.1109/TAES.2020.3021220. [17] Zhang L, Lei Z C, Le Y J, et al.Online recursive Gaussian process for target location based on ultra-short baselines[C]//2024 36th Chinese Control and Decision Conference (CCDC). May 25-27, 2024, Xi’an, China. IEEE, 2024: 4361-4366. DOI:10.1109/CCDC62350.2024.10587757. [18] Shen-tu H, Zhang H Y, Zhu Y M, et al. A variable structure multi-model maneuvering target tracking algorithm based on Monte Carlo learning[J]. IET Radar, Sonar & Navigation, 2023, 17(12): 1785-1795. DOI:10.1049/rsn2.12464. [19] 董浩. 移动传感器网络中复杂运动轨迹目标的智能跟踪调度算法研究[D]. 成都: 电子科技大学, 2022. [20] Xia L W, Zhang Y, Liu H J.Online optimization and feedback Elman neural network for maneuvering target tracking[C]//2017 4th IAPR Asian Conference on Pattern Recognition (ACPR). November 26-29, 2017, Nanjing, China. IEEE, 2018: 494-499. DOI:10.1109/ACPR.2017.56. [21] Zhu Y A, Jia Z Y, Wu Q H, et al.UAV trajectory tracking via RNN-enhanced IMM-KF with ADS-B data[C]//2024 IEEE Wireless Communications and Networking Conference (WCNC). April 21-24, 2024, Dubai, United Arab Emirates. IEEE, 2024: 1-6. DOI:10.1109/WCNC57260.2024.10570914. [22] Yu W T, Yu H Y, Du J P, et al.DeepGTT: A general trajectory tracking deep learning algorithm based on dynamic law learning[J]. IET Radar, Sonar & Navigation, 2021, 15(9): 1125-1150. DOI:10.1049/rsn2.12111. [23] Moon S, Youn W, Bang H.Novel deep-learning-aided multimodal target tracking[J]. IEEE Sensors Journal, 2021, 21(18): 20730-20739. DOI:10.1109/JSEN.2021.3100588. [24] 朱一鸣. 结合时序神经网络的多模型机动目标跟踪算法研究[D]. 杭州: 杭州电子科技大学, 2024. |