[1] Williams Q, Hemley R J. Hydrogen in the deep earth [J]. Annu Rev Earth Planet Sci, 2001,29:365-418.
[2] Bell D R, Rossman G. Water in Earths mantle: the role of nominally anhydrous minerals [J]. Science, 1992, 255:1391-1397.
[3] Bolfan-Casanova N. Water in the Earths mantle [J]. Mineral Mag, 2005, 69: 229-257.
[4] Hirschmann M M, Aubaud C, Withers A C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle [J]. Earth Planet Sci Lett, 2005,236:167-181.
[5] Evans R L, Hirth G, Baba K, et al. Geophysical evidence from the MELT area for compositional control on oceanic plates [J]. Nature, 2005, 437, 249-252.
[6] Hauri E H, Gaetai G A, Green T H. Partitioning of water during melting of the Earths upper mantle at H2O-undersatureated conditions [J]. Earth Plane Sci Lett, 2006,248:715-734.
[7] Hier-Majumder S, Anderson I M, Kohlstedt D L. Influence of protons on Fe-Mg inter-diffusion in olivine [J]. J Geophys Res, 2005,110, doi:10.1029/2004JB003292.
[8] Karato S, Jung H. Effects of pressure on high-temperature dislocation creep in olivine polycrystals [J]. Phil Mag A, 2003, 83: 401-414.
[9] Karato S, Paterson M S, Fitz Gerald J D. Rheology of synthetic olivine aggregates: influence of grain-size and water [J]. J Geophys Res, 1986, 91: 8151-8176.
[10] Karato S. The role of hydrogen in the electrical conductivity of the upper mantle [J]. Nature, 1990,347: 272-273.
[11] Kushiro I, Syono Y, Akimoto S. Melting of a peridotite nodule at high pressures and high water pressures [J]. J Geophys Res, 1968, 73: 6023-6029.
[12] Mei S, Kohlstedt D L. Influence of water on plastic deformation of olivine aggregates, 1. Diffusion creep regime [J]. J Geophys Res, 2000,105: 21457-21469.
[13] Baba K, Chave A D, Evans R L,et al. Mantle dynamics beneath the East Pacific Rise at 17uS: Insights from the Mantle Electromagnetic and Tomography (MELT) experiments [J]. J Geophys Res, 2006,111, doi:10.1029/2004JB003598.
[14] Braummiller J, Lee S, Doermann L. Mantel transition zone thickness in the central south-American subduction zone [J]. Geophysical Monograph Series,2006: 215-224.
[15] Fukao Y T, Koyama T, Obayashi, et al.Trans-pacific temperature field in the mantle transition region derived from seismic and electromagnetic tomography [J]. Earth Planet Sci Lett, 2004, 217: 425-434.
[16] Gatzemeier A, Moorkamp M. 3D modelling of electrical anisotropy from electromagnetic array data: hypothesis testing for different upper mantle conduction mechanisms [J]. Phys Earth Planet Inter, 2005, 149: 225-242.
[17] Shito A, Karato S, Kyoko N, et al. Towards mapping the three-dimensional distribution of water in the upper mantel from velocity and attenuation tomography [J]. Geophysical Monograph Series, 2006:225-236.
[18] Bolfan-Casanova N, Mackwell S, Keppler H, et al. Pressure dependence of H solubility in magnesiowustite up to 25 GPa: Implications for the storage of water in the Earths lower mantle [J]. Geophys Res Lett,2002, 29:1029-1032.
[19] Bromiley G D, Keppler H. An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes [J]. Contrib Mineral Petrol, 2004, 147:189-200.
[20] Bromiley G D, Keppler H, McCammon C, et al. Hydrogen solubility and speciation in natural, gem-quality chromian diopside [J]. Am Mineral, 2004, 89:941-949.
[21] Kohlstedt D L, Keppler H, Rubie D C. Solubility of water in the α、β and γ phases of (Mg, Fe)2SiO4 [J]. Contrib Mineral Petrol,1996,123:345-357.
[22] Litasove K, Ohtani E, Langenhorst F, et al.Water solubility in Mg-perovskites and water storage capacity in the lower mantle [J]. Earth Planet Sci Lett, 2003, 211:189-203.
[23] Lu R, Keppler H. Water solubility in pyrope to 100 kbar [J]. Contrib Mineral Petrol, 1997,129:35-42.
[24] Aubaud C, Hauri E H, Hirschmann M M. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts [J]. Geophy Res Lett,2004,31,L20611, doi:10.1029/2004GL021341.
[25] Bromiley G D, Pawley A R. The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stability [J]. Am Mineral, 2003, 88:99-108.
[26] Kanzaki M. Stability of hydrous magnesium silicates in the mantle transition zone [J]. Phys Earth Planet Inter,1991, 66:307-312.
[27] Karato S.Remote sensing of hydrogen in Earth mantle reviews in mineralogy & geochemistry //Keppler H. Smyth (eds). Water in Nominally Anhydrous Minerals, Washington DC:G&MSA,2006, 62:343-375.
[28] Bell D R, Ihinger P D, Rossman G R. Quantitative analysis of trace OH in garnet and pyroxenes [J]. Am Mineral,1995, 80:465-474.
[29] Bolfan-Casanova N, Keppler H, Rubie D C. Hydroxyl in MgSiO3 akimotoite: A polarized and high pressure IR study [J]. Am Mineral,2002, 87:603-608.
[30] Johnson E A.Water in nominally anhydrous crustal minerals:speciation, concentration, and geologic significance //Keppler H, Smyth (eds). Water in Nominally Anhydrous Minerals. Washington DC:G&MSA,2006, 62:117-154.
[31] Ringwood A E. Composition and petrology of the Earths Mantle [M]. New York: McGraw-Hill,1975.
[32] Anderson D L, Bass J D. Mineralogy and composition of the upper mantle . Geophys Res Lett, 1984,11:637-640.
[33] Bai Q, Kohlstedt D L. Substantial hydrogen solubility in olivine and implications for water storage in the mantle [J]. Nature,1992,357:672-674.
[34] Bai Q, Kohlstedt D L. Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine [J]. Phys Chem Minerals,1993, 19:460-471.
[35] Miller G H, Rossman G R, Harlow G E. The natural occurrence of hydroxide in olivine [J]. Phys Chem Minerals,1987, 14:461-472.
[36] Bell D R, Rossman G R, Maldener J, et al. Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum [J]. J Geophys Res, 2003, 108(B2):2105-2113.
[37] Bell D R, Rossman G R, Moore R O. Abundance and partitioning of OH in a high-pressure magmatic system: Megacrysts from the Monastery kimberlite, South Africa . J Petrol, 2004, 45:1539-1564.
[38] Matsyuk S S, Langer K. Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform [J]. Contr Mineral Petrol, 2004, 147:413-437.
[39] Koch-Müller M, Matsyuk S S, Rhede D, et al.Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe [J]. Phys Chem Minerals, 2006, 33:276-287.
[40] Peslier A H, Luhr J F, Post J. Low water contents in pyroxenes from spinel-peridotites of the oxidized,sub-arc mantle wedge [J]. Earth Plan Sc Lett, 2002, 201:69-86.
[41] Skogby H, Bell D R, Rossman G R. Hydroxide in pyroxene: Variations in the natural environment [J]. Am Mineral, 1990, 75:764-774.
[42] Katayama I, Nakashima S. Hydroxyl incorporation from deep subducted crust: Evidence for H2O transport into the mantle [J]. Am Mineral, 2003, 88:229-234.
[43] Katayama I, Nakashima S, Yurimoto H.Water content in natural eclogite and implication for water transport into the deep upper mantle [J]. Lithos, 2005, 86:245-259.
[44] Snyder G A, Taylor L A, Jerde E A, et al. Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: Evidence from stable isotopes and hydroxyl in garnet [J]. Am Mineral, 1995, 80:799-809.
[45] Mosenfelder J L, Deligne N I, Asimow P D, et al. Hydrogen incorporation in olivine from 2~12GPa [J]. Am Mineral, 2005, 91:285-294.
[46] Mierdel K, Keppler H. The temperature dependence of water solubility in enstatite [J]. Contrib Mineral Petrol, 2004, 148:305-311.
[47] Inoue T, Yurimoto H, Kudoh Y. Hydrous modified spinel Mg1.75SiH0.5O4——A new water reservoir in the mantle transition region [J]. Geophys Res Lett, 1995, 22:117-120.
[48] Yamada A, Inoue T, Irifune T. Melting of enstatite from 13 to 18 GPa under hydrous conditions [J]. Phys Earth Planet Int, 2004, 147:45-56.
[49] Stalder R, Skogby. Hydrogen incorporation in enstatite [J]. Eur J Mineral,2002, 14:1139-1144.
[50] Rauch M, Keppler H. Water solubility in orthopyroxene [J]. Contrib Mineral Petrol, 2002, 143:525-536.
[51] Meade C, Reffner J A, Ito E. Synchrotron infrared absorbance measurements of hydrogen in MgSiO3 perovskite [J]. Science, 1994,264:1558-1560.
[52] Murakami M,Hirose K,Yurimoto H, et al. Water in the Earths lower mantle [J]. Science, 2002, 295: 1885-1887.
[53] Keppler H,Bolfan-Casanova N.Thermodynamics of water solubility and partitioning //Keppler H, Smyth (eds). Water in Nominally Anhydrous Minerals. Washington DC:G&MSA,2006, 62:193-230.
[54] Suetsugu D,Inoue T,Yamada A, et al.Towards mapping the three-dimensional distribution of water in the transition zone from p-velocity tomography and 660 km discontinuity depths //Jacobsen S D, Van der Lee S (eds). Earth Deep Water Cycle. Washington DC: AGU, Geophysical Monograph Series, 2006,168:237-249.
[55] Kayama T, Hisayoshi Shi Utada H, et al.Water content in the mantle transition zone beneath the north pacific derived from the electrical conductivity anomaly //Jacobsen S D, Van der Lee S (eds). Earth Deep Water Cycle. Washington DC: AGU, Geophysical Monograph Series,2006,168:171-179.
[56] Courtier A, Revenauh J. A water-rich transition zone beneath the Eastern united states and gulf o mexico from multiple ScS reverberations //Jacobsen S D, Van der Lee S (eds). Earth Deep Water Cycle. Washington DC: AGU, Geophysical Monograph Series,2006,168:181-193.
[57] Lawrence J,Wysession M. Seismic evidence for subduction-transported water in the lower mantle //Jacobsen S D, Van der Lee S (eds). Earth Deep Water Cycle. Washington DC: AGU, Geophysical Monograph Series, 2006,168:251-261.
[58] Lizaralde D, Chave A, Hirth G,et al. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to California submarine cable data [J]. J Geophys Res,1995,100: 17837-17854.
[59] Ichiki M, Uyeshima M, Utada H, et al. Upper mantle conductivity structure of the back-arc region beneath northeastern China [J]. Geophys Res Lett, 2001, 28: 3773-3776.
[60] Tarits P, Hautot S, Perrier F. Water in the mantle: Results from electrical conductivity beneath the French Alps [J]. Geophys Res Lett, 2004, 31, doi: 10.1029/2003GL019277.
[61] Hirth G, Evans R L, Chave A D. Comparison of continental and oceanic mantle electrical conductivity: Is Archean lithosphere dry [J]? Geochem Geophys Geosyst, 2000, 1, doi: 10.1029/2000GC000048.
[62] Utada H, Koyama T, Shimizu H, et al.A semi-global reference model of electrical conductivity in the mid-mantle beneath the north Pacific region . Geophys Res Lett, 2003,30,doi:10.1029/2002GL016092.
[63] Olsen, N. Long-period (30 days-1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe [J]. Geophys J Int, 1999, 138:179-187.
[64] Simpson F. Intensity and direction of lattice-preferred orientation of olivine: are electrical and seismic anisotropies of the Australian mantle reconcilable [J]? Earth Planet Sci Lett, 2002, 203: 535-547.
[65] Huang X, Xu Y, Karato S. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite [J]. Nature, 2005, 434:746-749.
[66] Wang D, Mookherjee M, Xu Y, et al. The effect of water on electrical conductivity of olivine [J]. Nature, 2006, 443:977-980.
[67] Wang D, Li H, Yi L, et al. The electrical conductivity of upper-mantle rocks:water content in the upper mantle [J]. Phys Chem Minerals,2008, 35: 157-162.
[68] Jacobsen S,Smyth J.Effect of water on the sound velocities of ringwoodite in the transiton zone //Jacobsen S D, Van der Lee S (eds). Earth deep Water Cycle. Washington, DC: AGU, Geophysical Monograph Series,2006: 131-145.
[69] Meijde M, Marone F, Giardini, et al. Seismic evidence for water deep in Earths upper mantle [J]. Science, 2003,300:1556-1558.
|