[1] Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines [J]. Annals of Mathematics and Artificial Intelligence, 2001, 32:245-268.
[2] Wu Z X, Chen M, Miao B Q ,et al. Risk analysis of portfolio by copula-GARCH [J]. Systems Engineering-theory & Practice , 2006,28(3):45-52(in Chinese) 吴振翔,陈 敏,缪柏其,等.基于Copula-GARCH的投资组合风险分析 [J]. 系统工程理论与实践, 2006,28(3):45-52.
[3] Skalr A. Fonctions de repartition and dimensions et leurs marges [J]. Publications de l’Institut Statistique de l’ Universite de Paris, 1959,8:229-231
[4] Bedford T, Cooke R M. Vine-a new graphical model for dependent random variables [J]. Annals of Statistics,2002,30(4):1031-1068.
[5] Aas K, Czado C, Frigessi A, et al. pair-copula constructions of multiple dependence [M], Insurance: Mathematics and Economics, 2007,42.
[6] Jondeau E, Rockinger M. The copula-GARCH model of conditional dependencies: An international stock market application [J]. Journal of International Money and Finance,2006,25(5):827-853.
[7] Wei Y H, Zhang S Y. Multivariate copula-GARCH model and its applications in financial risk analysis [J]. Application of Statistics and Management, 2007,26(3):432-439(in Chinese). 韦艳华,张世英.多元Copula-GARCH模型及其在金融风险分析上的应用 [J]. 数理统计与管理,2007,26(3):432-439.
[8] Zhang M H. Quantitiative reasarch of multi-asset VaR by copula [J]. Quantitative & Technical Economics, 2004,21(4):67-70(in Chinese). 张明恒. 多金融资产风险价值的Copula计量方法研究 [J]. 数理经济技术经济研究, 2004,21(4):67-70.
|