[1] 张庆云,赵冬.高空间分辨率遥感影像建筑物提取方法综述[J].测绘与空间地理信息,2015,38(4):78-82.DOI:10.3969/j.issn.1672-5867.2015.04.026. [2] 钱瑶,唐立娜,赵景柱.基于遥感的建筑物高度快速提取研究综述[J].生态学报,2015,35(12):3886-3895.DOI:10.5846/stxb201309252361. [3] Myint S W,Gober P,Brazel A,et al. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery[J]. Remote Sensing of Environment,2011,115(5):1145-1161.DOI:10.1016/j.rse.2010.12.017. [4] 李莉.面向对象的高分辨率遥感影像信息提取研究.成都:成都理工大学,2012. [5] Cleve C, Kelly M, Kearns F R, et al. Classification of the wildland-urban interface:a comparison of pixel-and object-based classifications using high-resolution aerial photography[J]. Computers, Environment and Urban Systems,2008,32(4):317-326.DOI:10.1016/j.compenvurbsys.2007.10.001. [6] Baatz M,Schäpe A. Multiresolution segmentation:an optimization approach for high quality multi-Scale image segmentation//Strobl J,Blaschke T, Griesbner G. Angewandte Geographische Informations-Verarbeitung,XII,Wichmann-Verlag,Heidelberg,Germany,2000:12-23. [7] 王丹.一种高分辨率遥感影像建筑物边缘提取方法[J].环境保护与循环经济,2009,29(10):26-28.DOI:10.3969/j.issn.1674-1021.2009.10.010. [8] Jung C R,Schramm R. Rectangle detection based on a windowed hough transform//Proceedings of the 17th Brazilian Symposium on Computer Graphics and Image Processing. October 20, 2004, Curitiba,Brazil. IEEE, 2004:113-120. DOI:10.1109/SIBGRA.2004.1352951. [9] 魏德强.高分辨率遥感影像建筑物提取技术研究.郑州:解放军信息工程大学,2013. [10] 高薇.基于不变矩算法的高分辨率遥感影像建筑物特征提取.成都:电子科技大学,2013. [11] Dempster A P,Laird N M,Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society:Series B (Methodological),1977,39(1):1-22. DOI:10.1111/j.2517-6161.1977.tb01600.x. [12] Simonyan K,Zisserman A. Very deep convolutional networks for large-scale image recognition[J].ArXiv Preprint, 2014, ArXiv:1409.1556. [13] Szegedy C,Liu W,Jia Y Q,et al. Going deeper with convolutions//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12,2015, Boston, MA, USA. IEEE, 2015:1-9.DOI:10.1109/CVPR.2015.7298594. [14] He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas,NV,USA. IEEE, 2016:770-778.DOI:10.1109/CVPR.2016.90. [15] Mnih. Machine learning for aerial image labeling. Toronto:University of Toronto (Canada),2013. [16] Saito S,Yamashita T,Aoki Y. Multiple object extraction from aerial imagery with convolutional neural networks[J].Journal of Imaging Science and Technology,2016,60(1):10402.DOI:10.2352/j.imagingsci.technol.2016.60.1.010402. [17] Long J,Shelhamer E,Darrell T. Fully convolutional networks for semantic segmentation//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015:3431-3440.DOI:10.1109/CVPR.2015.7298965. [18] 刘文涛,李世华,覃驭楚.基于全卷积神经网络的建筑物屋顶自动提取[J].地球信息科学学报,2018,20(11):1562-1570.DOI:10.12082/dqxxkx.2018.180159. [19] 刘浩,骆剑承,黄波,等.基于特征压缩激活Unet网络的建筑物提取[J].地球信息科学学报,2019,21(11):1779-1789.DOI:10.12082/dqxxkx.2019.190285. [20] Szegedy C,Ioffe S,Vanhoucke V,et al. Inception-v4,inception-ResNet and the impact of residual connections on learning[J]. ArXiv Preprint, 2016, ArXiv:1602.07261. [21] Szegedy C,Vanhoucke V,Ioffe S,et al. Rethinking the inception architecture for computer vision//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV,USA. IEEE, 2016:2818-2826.DOI:10.1109/CVPR.2016.308. [22] Ioffe S,Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift[J]. ArXiv Preprint, 2015, ArXiv:1502.03167. [23] Srivastava N,Hinton G E,Krizhevsky A,et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1):1929-1958. [24] Milletari F,Navab N,Ahmadi S A. V-net:fully convolutional neural networks for volumetric medical image segmentation//2016 Fourth International Conference on 3D Vision (3DV). October 25-28, 2016, Stanford,CA,USA. IEEE, 2016:565-571.DOI:10.1109/3DV.2016.79. [25] Ronneberger O,Fischer P,Brox T. U-net:convolutional networks for biomedical image segmentation[J]. ArXiv Preprint, 2015, ArXiv:1505.04597. [26] Hinton G E,Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507.DOI:10.1126/science.1127647. [27] Zhou Z W,Siddiquee M M R,Tajbakhsh N,et al. UNet++:a nested U-Net architecture for medical image segmentation[M]//Stoyanov D,Taylor Z,Carneiro G,et al. Deep learning in medical image analysis and multimodal learning for clinical decision support. Spain:Springer,2018:3-11. [28] Huang G,Liu Z,van der Maaten L,et al. Densely connected convolutional networks//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu,HI,USA. IEEE, 2017:2261-2269.DOI:10.1109/XVPR.2017.243. [29] Lee C Y,Xie S N,Gallagher P W,et al. Deeply-supervised nets[J]. ArXiv Preprint, 2014, ArXiv:1409.5185. [30] Kingma D P,Ba J. Adam:a method for stochastic optimization[J]. ArXiv Preprint, 2015, ArXiv:1412.6980. [31] Ji S P,Wei S Q,Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(1):574-586. DOI:10.1109/TGRS.2018.2858817. |