[1] Bowyer K W, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D +2D face recognition[J]. Computer Vision and Image Understanding, 2006, 101(1):1-15. [2] Deng J K, Guo J, Xue N N, et al. ArcFace:additive angular margin loss for deep face recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:4685-4694. [3] Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition[C]//Procedings of the British Machine Vision Conference 2015. Swansea. British Machine Vision Association, 2015:1-12. [4] Schroff F, Kalenichenko D, Philbin J. FaceNet:a unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015:815-823. [5] Taigman Y, Yang M, Ranzato M, et al. DeepFace:closing the gap to human-level performance in face verification[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. June 23-28, 2014, Columbus, OH, USA. IEEE, 2014:1701-1708. [6] Faltemier T C, Bowyer K W, Flynn P J. Using a multi-instance enrollment representation to improve 3D face recognition[C]//2007 First IEEE International Conference on Biometrics:Theory, Applications, and Systems. September 27-29, 2007, Crystal City, VA, USA. IEEE, 2007:1-6. [7] Dou P F, Shah S K, Kakadiaris I A. End-to-end 3D face reconstruction with deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI. IEEE, 2017:1503-1512. [8] Feng Y, Wu F, Shao X H, et al. Joint 3D face reconstruction and dense alignment with position map regression network[C]//Computer Vision-ECCV 2018, 2018:557-574. DOI:10.1007/978-3-030-01264-9_33. [9] Richardson E, Sela M T, Kimmel R. 3D face reconstruction by learning from synthetic data[C]//2016 Fourth International Conference on 3D Vision (3DV). October 25-28, 2016, Stanford, CA, USA. IEEE, 2016:460-469. [10] Zulqarnain Gilani S, Mian A. Learning from millions of 3D scans for large-scale 3D face recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018:1896-1905. [11] Mu G D, Huang D, Hu G S, et al. Led3D:a lightweight and efficient deep approach to recognizing low-quality 3D faces[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:5766-5775. [12] Gilani S Z, Mian A, Shafait F, et al. Dense 3D face correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(7):1584-1598. [13] Gilani S Z, Mian A. Towards large-scale 3D face recognition[C]//2016 International Conference on Digital Image Computing:Techniques and Applications (DICTA). November 30-December 2, 2016, Gold Coast, QLD, Australia. IEEE, 2016:1-8. [14] Gilani S Z, Mian A, Eastwood P. Deep, dense and accurate 3D face correspondence for generating population specific deformable models[J]. Pattern Recognition, 2017, 69:238-250. [15] Isola P, Zhu J Y, Zhou T H, et al. Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:5967-5976. [16] Wang W X, Fu Y W, Qian X L, et al. FM2u-net:face morphological multi-branch network for makeup-invariant face verification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:5729-5739. [17] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[C]//Computer Vision-ECCV 2016, 2016:694-711. DOI:10.1007/978-3-319-46475-6_43. [18] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017:2242-2251. [19] Zhang K P, Zhang Z P, Li Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503. [20] Ronneberger O, Fischer P, Brox T. U-net:convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham:Springer International Publishing, 2015:234-241. [21] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:770-778. [22] Yi D, Lei Z, Liao S C, et al. Learning face representation from scratch[EB/OL]. arXiv:1411.7923. (2014-11-28)[2021-01-20]. https://arxiv.org/pdf/1411.7923.pdf. [23] Zhu X Y, Lei Z, Liu X M, et al. Face alignment across large poses:a 3D solution[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:146-155. [24] Tran A T, Hassner T, Masi I, et al. Regressing robust and discriminative 3D morphable models with a very deep neural network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:1493-1502. [25] Guo J Z, Zhu X Y, Yang Y, et al. Towards fast, accurate and stable 3D dense face alignment[M]//Computer Vision-ECCV 2020. Cham:Springer International Publishing, 2020:152-168. [26] Vijayan V, Bowyer K W, Flynn P J, et al. Twins 3D face recognition challenge[C]//2011 International Joint Conference on Biometrics (IJCB). October 11-13, 2011, Washington, DC, USA. IEEE, 2011:1-7. [27] Zhong C, Sun Z N, Tan T N. Learning efficient codes for 3D face recognition[C]//200815th IEEE International Conference on Image Processing. October 12-15, 2008, San Diego, CA, USA. IEEE, 2008:1928-1931. [28] Savran A, Alyüz N, Dibeklioğlu H, et al. Bosphorus database for 3D face analysis[M]//Lecture Notes in Computer Science. Berlin, Heidelberg:Springer Berlin Heidelberg, 2008:47-56. [29] Gupta S, Markey M K, Bovik A C. Anthropometric 3D face recognition[J]. International Journal of Computer Vision, 2010, 90(3):331-349. |