Journal of University of Chinese Academy of Sciences ›› 2026, Vol. 43 ›› Issue (1): 51-60.DOI: 10.7523/j.ucas.2024.062
• Mathematics & Physics • Previous Articles Next Articles
Yang ZHAO1,2,3(
), Zheng LU1,2, Jie LIU3, Rong ZHANG1, Tingzhou YAN4, Chuxuan TANG1, Jian LI4
Received:2024-01-04
Revised:2024-06-04
Online:2026-01-15
Contact:
Yang ZHAO
CLC Number:
Yang ZHAO, Zheng LU, Jie LIU, Rong ZHANG, Tingzhou YAN, Chuxuan TANG, Jian LI. Thermal insulation performance and mechanical characteristics of clay-based foamed polymeric soil subgrade materials[J]. Journal of University of Chinese Academy of Sciences, 2026, 43(1): 51-60.
| 原材料 | 基本性质 | 数值 |
|---|---|---|
| 水泥 | 凝结时间/min | 初凝102 终凝206 |
| 3 d强度/MPa | 抗压27.7 抗折5.6 | |
| 28 d强度/MPa | 抗压52.5 抗折9.2 | |
| 土体 | 相对密度 | 2.75 |
| 最大干密度/(g/cm3) | 1.85 | |
| 最优含水率/% | 15.0 | |
| 液限/% | 41.8 | |
| 塑限/% | 16.0 | |
| 塑性指数 | 25.8 | |
| 总含盐量/% | 3.1 | |
| pH值 | 8.96 |
Table 1 Basic physical and mechanical properties of raw materials
| 原材料 | 基本性质 | 数值 |
|---|---|---|
| 水泥 | 凝结时间/min | 初凝102 终凝206 |
| 3 d强度/MPa | 抗压27.7 抗折5.6 | |
| 28 d强度/MPa | 抗压52.5 抗折9.2 | |
| 土体 | 相对密度 | 2.75 |
| 最大干密度/(g/cm3) | 1.85 | |
| 最优含水率/% | 15.0 | |
| 液限/% | 41.8 | |
| 塑限/% | 16.0 | |
| 塑性指数 | 25.8 | |
| 总含盐量/% | 3.1 | |
| pH值 | 8.96 |
| 序号 | 试验编号 | 设计密度/(kg/m3) | 盐渍土掺量/% | 水料比 |
|---|---|---|---|---|
| 1 | D600S40W0.45 | 600 | 40 | 0.45 |
| 2 | D800S40W0.45 | 800 | 40 | 0.45 |
| 3 | D1000S40W0.45 | 1 000 | 40 | 0.45 |
| 4 | D1200S40W0.45 | 1 200 | 40 | 0.45 |
| 5 | D800S30W0.45 | 800 | 30 | 0.45 |
| 6 | D800S50W0.45 | 800 | 50 | 0.45 |
| 7 | D800S60W0.45 | 800 | 60 | 0.45 |
| 8 | D800S40W0.4 | 800 | 40 | 0.40 |
| 9 | D800S40W0.5 | 800 | 40 | 0.50 |
| 10 | D800S40W0.55 | 800 | 40 | 0.55 |
Table 2 Mixture design
| 序号 | 试验编号 | 设计密度/(kg/m3) | 盐渍土掺量/% | 水料比 |
|---|---|---|---|---|
| 1 | D600S40W0.45 | 600 | 40 | 0.45 |
| 2 | D800S40W0.45 | 800 | 40 | 0.45 |
| 3 | D1000S40W0.45 | 1 000 | 40 | 0.45 |
| 4 | D1200S40W0.45 | 1 200 | 40 | 0.45 |
| 5 | D800S30W0.45 | 800 | 30 | 0.45 |
| 6 | D800S50W0.45 | 800 | 50 | 0.45 |
| 7 | D800S60W0.45 | 800 | 60 | 0.45 |
| 8 | D800S40W0.4 | 800 | 40 | 0.40 |
| 9 | D800S40W0.5 | 800 | 40 | 0.50 |
| 10 | D800S40W0.55 | 800 | 40 | 0.55 |
| 序号 | 试验编号 | 导热系数 | 无侧限抗压强度/kPa | E50/MPa | APS/μm | D50/μm | D90/μm | AR | R50 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | D600S40W0.45 | 0.111 8 | 469.4 | 10.6 | 92.16 | 84.69 | 147.89 | 0.895 4 | 0.981 5 |
| 2 | D800S40W0.45 | 0.139 3 | 739.1 | 26.1 | 81.15 | 77.77 | 117.11 | 0.897 8 | 0.986 8 |
| 3 | D1000S40W0.45 | 0.183 3 | 1 348.2 | 68.5 | 76.94 | 64.38 | 135.00 | 0.967 0 | 0.951 1 |
| 4 | D1200S40W0.45 | 0.248 7 | 2 325.5 | 121.8 | 57.18 | 53.74 | 86.52 | 0.966 4 | 0.994 5 |
| 5 | D800S30W0.45 | 0.177 3 | 811.6 | 73.1 | 79.60 | 76.70 | 126.90 | 0.927 8 | 0.980 7 |
| 6 | D800S50W0.45 | 0.150 2 | 387.6 | 22.1 | 85.6 | 84.6 | 136.21 | 0.922 1 | 0.984 1 |
| 7 | D800S60W0.45 | 0.136 1 | 252.2 | 15.7 | 87.51 | 76.09 | 140.78 | 0.939 8 | 0.983 7 |
| 8 | D800S40W0.4 | 0.091 1 | 113.1 | 14.0 | 100.24 | 102.54 | 148.64 | 0.956 9 | 0.979 3 |
| 9 | D800S40W0.5 | 0.151 9 | 762.0 | 24.6 | 98.00 | 97.60 | 134.60 | 0.926 2 | 0.985 0 |
| 10 | D800S40W0.55 | 0.125 1 | 799.2 | 25.4 | 98.50 | 98.14 | 134.60 | 0.958 7 | 0.977 7 |
Table 3 Representative indicators of mesoscopic pore structure of specimens with different mixtures
| 序号 | 试验编号 | 导热系数 | 无侧限抗压强度/kPa | E50/MPa | APS/μm | D50/μm | D90/μm | AR | R50 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | D600S40W0.45 | 0.111 8 | 469.4 | 10.6 | 92.16 | 84.69 | 147.89 | 0.895 4 | 0.981 5 |
| 2 | D800S40W0.45 | 0.139 3 | 739.1 | 26.1 | 81.15 | 77.77 | 117.11 | 0.897 8 | 0.986 8 |
| 3 | D1000S40W0.45 | 0.183 3 | 1 348.2 | 68.5 | 76.94 | 64.38 | 135.00 | 0.967 0 | 0.951 1 |
| 4 | D1200S40W0.45 | 0.248 7 | 2 325.5 | 121.8 | 57.18 | 53.74 | 86.52 | 0.966 4 | 0.994 5 |
| 5 | D800S30W0.45 | 0.177 3 | 811.6 | 73.1 | 79.60 | 76.70 | 126.90 | 0.927 8 | 0.980 7 |
| 6 | D800S50W0.45 | 0.150 2 | 387.6 | 22.1 | 85.6 | 84.6 | 136.21 | 0.922 1 | 0.984 1 |
| 7 | D800S60W0.45 | 0.136 1 | 252.2 | 15.7 | 87.51 | 76.09 | 140.78 | 0.939 8 | 0.983 7 |
| 8 | D800S40W0.4 | 0.091 1 | 113.1 | 14.0 | 100.24 | 102.54 | 148.64 | 0.956 9 | 0.979 3 |
| 9 | D800S40W0.5 | 0.151 9 | 762.0 | 24.6 | 98.00 | 97.60 | 134.60 | 0.926 2 | 0.985 0 |
| 10 | D800S40W0.55 | 0.125 1 | 799.2 | 25.4 | 98.50 | 98.14 | 134.60 | 0.958 7 | 0.977 7 |
| [1] | Lu Z, Xian S H, Yao H L, et al. Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil[J]. Cold Regions Science and Technology, 2019, 157: 42-52. DOI: 10.1016/j.coldregions.2018.09.009 . |
| [2] | Lu Z, She J B, Wu X W, et al. Cumulative strain characteristics of compacted soil under effect of freeze-thaw cycles with water supply[J]. Transportation Geotechnics, 2019, 21: 100291. DOI: 10.1016/j.trgeo.2019.100291 . |
| [3] | Zhao Y, Lu Z, Yao H L, et al. Experimental study of dynamic resilient modulus of subgrade soils under coupling of freeze-thaw cycles and dynamic load[J]. Journal of Central South University, 2020, 27(7): 2043-2053. DOI: 10.1007/s11771-020-4429-4 . |
| [4] | 杨正宏, 李婷婷, 于龙. 低密度泡沫混凝土导热系数模型研究[J]. 建筑材料学报, 2020, 23(2): 322-327. DOI: 10.3969/j.issn.1007-9629.2020.02.013 . |
| [5] | Zhang J F, Yan Y, Hu Z H. Preparation and characterization of foamed concrete with Ti-extracted residues and red gypsum[J]. Construction and Building Materials, 2018, 171: 109-119. DOI: 10.1016/j.conbuildmat.2018.03.072 . |
| [6] | Samson G, Phelipot-Mardelé A, Lanos C. Thermal and mechanical properties of gypsum-cement foam concrete: effects of surfactant[J]. European Journal of Environmental and Civil Engineering, 2016, 21: 1502-1521. DOI: 10.1080/19648189.2016.1177601 . |
| [7] | Ouyang X P, Guo Y X, Qiu X Q. The feasibility of synthetic surfactant as an air entraining agent for the cement matrix[J]. Construction and Building Materials, 2008, 22(8): 1774-1779. DOI: 10.1016/j.conbuildmat.2007.05.002 . |
| [8] | Xiong Y L, Zhu Y, Chen C, et al. Effect of nano-alumina modified foaming agents on properties of foamed concrete[J]. Construction and Building Materials, 2021, 267: 121045. DOI: 10.1016/j.conbuildmat.2020.121045 . |
| [9] | Ranjani G S, Ramamurthy K. Behaviour of foam concrete under sulphate environments[J]. Cement and Concrete Composites, 2012, 34(7): 825-834. DOI: 10.1016/j.cemconcomp.2012.03.007 . |
| [10] | Kim Y T, Ahn J, Han W J, et al. Experimental evaluation of strength characteristics of stabilized dredged soil[J]. Journal of Materials in Civil Engineering, 2010, 22(5): 539-544. DOI: /10.1061/(ASCE)MT.1943-5533.0000052 . |
| [11] | Lim S K, Tan C S, Zhao X, et al. Strength and toughness of lightweight foamed concrete with different sand grading[J]. KSCE Journal of Civil Engineering, 2015, 19(7): 2191-2197. DOI: 10.1007/s12205-014-0097-y . |
| [12] | 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土单轴抗压力学特性及唯象本构模型[J]. 应用基础与工程科学学报, 2023, 31(3): 675-689. DOI: 10.16058/j.issn.1005-0930.2023.03.012 . |
| [13] | 欧孝夺, 彭远胜, 莫鹏, 等. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(S1): 241-245. |
| [14] | 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 124-129. DOI: 10.11896/cldb.21030274 . |
| [15] | Kearsley E P, Wainwright P J. The effect of high fly ash content on the compressive strength of foamed concrete[J]. Cement and Concrete Research, 2001, 31(1): 105-112. DOI: 10.1016/S0008-8846(00)00430-0 . |
| [16] | Jones M R, McCarthy A. Heat of hydration in foamed concrete: effect of mix constituents and plastic density[J]. Cement and Concrete Research, 2006, 36(6): 1032-1041. DOI: 10.1016/j.cemconres.2006.01.011 . |
| [17] | Lim S K, Tan C S, Li B, et al. Utilizing high volumes quarry wastes in the production of lightweight foamed concrete[J]. Construction and Building Materials, 2017, 151: 441-448. DOI: 10.1016/j.conbuildmat.2017.06.091 . |
| [18] | Jones M R, Ozlutas K, Zheng L. Stability and instability of foamed concrete[J]. Magazine of Concrete Research, 2016, 68: 542-549. DOI: 10.1680/MACR.15.00097 . |
| [19] | Kunhanandan Nambiar E K, Ramamurthy K. Influence of filler type on the properties of foam concrete[J]. Cement and Concrete Composites, 2006, 28(5): 475-480. DOI: 10.1016/j.cemconcomp.2005.12.001 . |
| [20] | Spyridopoulos M T, Simons S J R. Effect of natural organic matter on the stability of a liquid film between two colliding bubbles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 235(1/2/3): 25-34. DOI: 10.1016/j.colsurfa.2003.01.001 . |
| [21] | Raj A, Sathyan D, Mini K M. Physical and functional characteristics of foam concrete: a review[J]. Construction and Building Materials, 2019, 221: 787-799. DOI: 10.1016/j.conbuildmat.2019.06.052 . |
| [22] | Ramamurthy K, Kunhanandan Nambiar E K, Ranjani G S. A classification of studies on properties of foam concrete[J]. Cement and Concrete Composites, 2009, 31(6): 388-396. DOI: 10.1016/j.cemconcomp.2009.04.006 . |
| [23] | Kunhanandan Nambiar E K, Ramamurthy K. Models relating mixture composition to the density and strength of foam concrete using response surface methodology[J]. Cement and Concrete Composites, 2006, 28(9): 752-760. DOI: 10.1016/j.cemconcomp.2006.06.001 . |
| [24] | Horpibulsuk S, Suddeepong A, Chinkulkijniwat A, et al. Strength and compressibility of lightweight cemented clays[J]. Applied Clay Science, 2012, 69: 11-21. DOI: 10.1016/j.clay.2012.08.006 . |
| [25] | Cong M, Bing C. Properties of a foamed concrete with soil as filler[J]. Construction and Building Materials, 2015, 76: 61-69. DOI: 10.1016/j.conbuildmat.2014.11.066 . |
| [26] | 赵文辉. 高速铁路泡沫轻质混凝土路基结构性能及施工技术研究[D]. 成都: 西南交通大学, 2018. |
| [27] | 王才进, 蔡国军, 武猛, 等. 基于人工智能算法预测土体导热系数[J]. 岩土工程学报, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016 . |
| [28] | 张涛, 杨玉玲, 张家铭, 等. 基于相似性原则的橡胶颗粒-砂混合物热导率理论模型[J]. 岩土工程学报, 2024, 46(2): 436-444. DOI: 10.11779/CJGE20221333 . |
| [29] | 徐洁, 胡海涛, 郑植. 压实度和含水率对非饱和土导热系数的影响[J]. 岩土工程学报, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048 . |
| [30] | 李猛, 黄寅生, 张少波, 等. 泡沫混凝土的研究进展及展望[J]. 材料导报, 2016, 30(S1): 402-405. |
| [31] | 陈兵, 胡华洁, 刘宁. 生土泡沫混凝土试验研究[J]. 建筑材料学报, 2015, 18(1): 1-6. DOI: 10.3969/j.issn.1007-9629.2015.01.001 . |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn