Journal of University of Chinese Academy of Sciences ›› 2026, Vol. 43 ›› Issue (1): 93-103.DOI: 10.7523/j.ucas.2024.019
• Electronics and Computer Science • Previous Articles Next Articles
Ruiqi SUN1,2, Wenjuan ZHANG1(
), Zhen LI1, Xuesong MA3, Junlin MEI1,2
Received:2024-01-19
Revised:2024-04-03
Online:2026-01-15
Contact:
Wenjuan ZHANG
CLC Number:
Ruiqi SUN, Wenjuan ZHANG, Zhen LI, Xuesong MA, Junlin MEI. Effect of patch size on super-resolution of large scene remote sensing images[J]. Journal of University of Chinese Academy of Sciences, 2026, 43(1): 93-103.
| 分块比 | 切块尺寸 | 切块数量 |
|---|---|---|
| 1/16 | 12 | 983 040 |
| 1/8 | 24 | 245 760 |
| 1/4 | 48 | 61 440 |
| 1/2 | 96 | 15 360 |
| 1 | 192 | 3 840 |
| 2 | 384 | 960 |
| 4 | 768 | 240 |
| 8 | 1 536 | 60 |
Table 1 Patch size and number of patches of the image used in the experiment
| 分块比 | 切块尺寸 | 切块数量 |
|---|---|---|
| 1/16 | 12 | 983 040 |
| 1/8 | 24 | 245 760 |
| 1/4 | 48 | 61 440 |
| 1/2 | 96 | 15 360 |
| 1 | 192 | 3 840 |
| 2 | 384 | 960 |
| 4 | 768 | 240 |
| 8 | 1 536 | 60 |
| 模型名称 | 参数量/M | 浮点运算数/G |
|---|---|---|
| ESPCN | 0.45 | 1.44 |
| RDBPN | 15.20 | 4.91 |
| HSENET | 5.43 | 10.79 |
Table 2 Main parameters of the selected model in the experiment
| 模型名称 | 参数量/M | 浮点运算数/G |
|---|---|---|
| ESPCN | 0.45 | 1.44 |
| RDBPN | 15.20 | 4.91 |
| HSENET | 5.43 | 10.79 |
| 分块比 | ΔPSNR(dB)/ΔSSIM | ||
|---|---|---|---|
| ESPCN | RDBPN | HSENET | |
| 1/16 | — | — | — |
| 1/8 | 0.522 8/0.098 0 | 0.279 0/0.037 4 | 0.231 8/0.035 8 |
| 1/4 | 0.073 4/0.018 4 | 0.113 8/0.013 9 | 0.153 6/0.015 6 |
| 1/2 | 0.027 1/0.007 0 | 0.054 9/0.006 6 | 0.084 1/0.007 6 |
| 1 | 0.010 4/0.002 9 | 0.025 4/0.003 2 | 0.044 8/0.003 7 |
| 2 | 0.004 7/0.001 3 | 0.012 6/0.001 6 | 0.024 9/0.001 7 |
| 4 | 0.001 8/0.000 6 | 0.005 9/0.000 8 | 0.015 9/0.000 7 |
| 8 | 0.001 1/0.000 3 | 0.003 0/0.000 4 | 内存不足(out of memory) |
| 16 | 0.000 6/0.000 1 | 0.001 9/0.000 2 | 内存不足(out of memory) |
Table 3 PSNR and SSIM changes of each model as the ratio of test block size to training block size increases
| 分块比 | ΔPSNR(dB)/ΔSSIM | ||
|---|---|---|---|
| ESPCN | RDBPN | HSENET | |
| 1/16 | — | — | — |
| 1/8 | 0.522 8/0.098 0 | 0.279 0/0.037 4 | 0.231 8/0.035 8 |
| 1/4 | 0.073 4/0.018 4 | 0.113 8/0.013 9 | 0.153 6/0.015 6 |
| 1/2 | 0.027 1/0.007 0 | 0.054 9/0.006 6 | 0.084 1/0.007 6 |
| 1 | 0.010 4/0.002 9 | 0.025 4/0.003 2 | 0.044 8/0.003 7 |
| 2 | 0.004 7/0.001 3 | 0.012 6/0.001 6 | 0.024 9/0.001 7 |
| 4 | 0.001 8/0.000 6 | 0.005 9/0.000 8 | 0.015 9/0.000 7 |
| 8 | 0.001 1/0.000 3 | 0.003 0/0.000 4 | 内存不足(out of memory) |
| 16 | 0.000 6/0.000 1 | 0.001 9/0.000 2 | 内存不足(out of memory) |
| 分块比 | PSNR(dB)/SSIM | ||
|---|---|---|---|
| ESPCN | RDBPN | HSENET | |
| 21.020 8/0.452 6 | 21.810 5/0.563 1 | 21.830 0/0.566 1 | |
| 21.543 6/0.550 6 | 22.089 4/0.600 5 | 22.061 8/0.601 7 | |
| 21.617 0/0.569 0 | 22.203 2/0.614 4 | 22.215 4/0.6173 | |
| 21.644 1/0.576 1 | 22.258 1/0.621 0 | 22.299 5/0.624 9 | |
| 1 | 21.654 5/0.579 0 | 22.283 5/0.624 2 | 22.344 2/0.628 6 |
| 2 | 21.659 1/0.580 3 | 22.296 2/0.625 8 | 22.369 1/0.630 2 |
| 4 | 21.660 9/0.580 9 | 22.302 1/0.626 6 | 22.385 1/0.631 0 |
| 8 | 21.662 0/0.581 2 | 23.305 1/0.627 0 | *内存不足(out of memory) |
| 16 | 21.662 7/0.581 4 | 23.307 1/0.627 2 | *内存不足(out of memory) |
| 整块输入 | 21.663 0/0.581 5 | *21.756 5/0.520 3 | *内存不足(out of memory) |
Table 4 Patch size versus PSNR and SSIM of each model
| 分块比 | PSNR(dB)/SSIM | ||
|---|---|---|---|
| ESPCN | RDBPN | HSENET | |
| 21.020 8/0.452 6 | 21.810 5/0.563 1 | 21.830 0/0.566 1 | |
| 21.543 6/0.550 6 | 22.089 4/0.600 5 | 22.061 8/0.601 7 | |
| 21.617 0/0.569 0 | 22.203 2/0.614 4 | 22.215 4/0.6173 | |
| 21.644 1/0.576 1 | 22.258 1/0.621 0 | 22.299 5/0.624 9 | |
| 1 | 21.654 5/0.579 0 | 22.283 5/0.624 2 | 22.344 2/0.628 6 |
| 2 | 21.659 1/0.580 3 | 22.296 2/0.625 8 | 22.369 1/0.630 2 |
| 4 | 21.660 9/0.580 9 | 22.302 1/0.626 6 | 22.385 1/0.631 0 |
| 8 | 21.662 0/0.581 2 | 23.305 1/0.627 0 | *内存不足(out of memory) |
| 16 | 21.662 7/0.581 4 | 23.307 1/0.627 2 | *内存不足(out of memory) |
| 整块输入 | 21.663 0/0.581 5 | *21.756 5/0.520 3 | *内存不足(out of memory) |
| [1] | 张兵.当代遥感科技发展的现状与未来展望[J].中国科学院院刊,2017,32(7):774-784.DOI:10.16418/j.issn.1000-3045.2017.07.012 . |
| [2] | 黄昕, 张良培, 李平湘. 高空间分辨率遥感图像分类的SSMC方法[J]. 中国图象图形学报, 2006, 11(4): 529-534, 插4. DOI: 10.3969/j.issn.1006-8961.2006.04.014 . |
| [3] | Martins V S, Kaleita A L, Gelder B K, et al. Exploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 56-73. DOI: 10.1016/j.isprsjprs.2020.08.004 . |
| [4] | 张鑫龙, 陈秀万, 李飞, 等. 高分辨率遥感影像的深度学习变化检测方法[J]. 测绘学报, 2017, 46(8): 999-1008. DOI: 10.11947/j.AGCS.2017.20170036 . |
| [5] | Fytsilis A L, Prokos A, Koutroumbas K D, et al. A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 165-186. DOI: 10.1016/j.isprsjprs.2016.06.001 . |
| [6] | 林祥国, 张继贤. 面向对象的形态学建筑物指数及其高分辨率遥感影像建筑物提取应用[J]. 测绘学报, 2017, 46(6): 724-733. DOI: 10.11947/j.AGCS.2017.20170068 . |
| [7] | Sun X, Wang P J, Yan Z Y, et al. FAIR1M: a benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 116-130. DOI: 10.1016/j.isprsjprs.2021.12.004 . |
| [8] | 郑凯旋, 林兴稳, 闻建光, 等. 集合卡尔曼滤波方法的高时空分辨率山区 地表反照率反演[J]. 遥感学报, 2022, 26(12): 2568-2581. DOI: 10.11834/jrs.20210322 . |
| [9] | Huang L, Han X Y, Wang X L, et al. Coupling with high-resolution remote sensing data to evaluate urban non-point source pollution in Tongzhou, China[J]. The Science of the Total Environment, 2022, 831: 154632. DOI: 10.1016/j.scitotenv.2022.154632 . |
| [10] | 左超, 陈钱. 计算光学成像: 何来, 何处, 何去, 何从?[J]. 红外与激光工程, 2022, 51(2): 150-330. DOI: 10.3788/IRLA20220110 . |
| [11] | 左超, 陈钱. 分辨率, 超分辨率与空间带宽积拓展:从计算光学成像角度的一些思考[J]. 中国光学(中英文), 2022(6): 1105-1166. DOI: 10.37188/CO.2022-0105 . |
| [12] | 郑珂. 基于深度学习的高光谱图像超分辨率重建与分类方法研究[D]. 北京: 中国矿业大学 (北京), 2020. DOI: 10.27624/d.cnki.gzkbu.2020.000027 . |
| [13] | 李佳星, 赵勇先, 王京华. 基于深度学习的单幅图像超分辨率重建算法综述[J]. 自动化学报, 2021, 47(10): 2341-2363. DOI: 10.16383/j.aas.c190859 . |
| [14] | Keys R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. DOI: 10.1109/TASSP.1981.1163711 . |
| [15] | Wang Q M, Shi W Z, Atkinson P M. Sub-pixel mapping of remote sensing images based on radial basis function interpolation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 1-15. DOI: 10.1016/j.isprsjprs.2014.02.012 . |
| [16] | Ma J L, Chan J C W, Canters F. Robust locally weighted regression for super-resolution enhancement of multi-angle remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1357-1371. DOI: 10.1109/JSTARS.2014.2312887 . |
| [17] | Wang P, Yao H Y, Li C, et al. Multiresolution analysis based on dual-scale regression for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5406319. DOI: 10.1109/tgrs.2021.3131477 . |
| [18] | Pan Z X, Yu J, Huang H J, et al. Super-resolution based on compressive sensing and structural self-similarity for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4864-4876. DOI: 10.1109/TGRS.2012.2230270 . |
| [19] | Hou B, Zhou K, Jiao L C. Adaptive super-resolution for remote sensing images based on sparse representation with global joint dictionary model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2312-2327. DOI: 10.1109/TGRS.2017.2778191 . |
| [20] | Jiang K, Wang Z Y, Yi P, et al. Edge-enhanced GAN for remote sensing image superresolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5799-5812. DOI: 10.1109/TGRS.2019.2902431 . |
| [21] | Xu M Z, Ma J, Zhu Y Y. Dual-Diffusion: dual conditional denoising diffusion probabilistic models for blind super-resolution reconstruction in RSIs[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6008505. DOI: 10.1109/LGRS.2023.3304418 . |
| [22] | Dong C, Loy C C, He K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. DOI: 10.1109/TPAMI.2015.2439281 . |
| [23] | Shi W Z, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 1874-1883. DOI: 10.1109/CVPR.2016.207 . |
| [24] | Pan Z X, Ma W, Guo J Y, et al. Super-resolution of single remote sensing image based on residual dense backprojection networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7918-7933. DOI: 10.1109/TGRS.2019.2917427 . |
| [25] | Lei S, Shi Z W. Hybrid-scale self-similarity exploitation for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5401410. DOI: 10.1109/TGRS.2021.3069889 . |
| [26] | Ji S P, Wei S Q, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574-586. DOI: 10.1109/TGRS.2018.2858817 . |
| [27] | Odena A, Dumoulin V, Olah C. Deconvolution and checkerboard artifacts[J]. Distill, 2016, 1(10): e3. DOI: 10.23915/distill.00003 . |
| [1] | Jiayi ZHAO, Yong MA, Fu CHEN, Wutao YAO, Erping SHANG, Shuyan ZHANG, An LONG. Super-resolution reconstruction of high-resolution remote sensing images for real scenes [J]. Journal of University of Chinese Academy of Sciences, 2026, 43(1): 80-92. |
| [2] | XIONG Shimei, XU Wenqiang, BAO Anming, WANG Zhengyu, TAO Zefu. Individual tree segmentation of desert Haloxylon ammodendron forests based on UAV LiDAR [J]. Journal of University of Chinese Academy of Sciences, 2025, 42(5): 700-710. |
| [3] | ZHOU Qingze, GUO Qing. Multispectral remote sensing image pan-sharpening method based on multi-residual network [J]. Journal of University of Chinese Academy of Sciences, 2025, 42(4): 565-575. |
| [4] | ZENG Jianshun, LYU Yanjie, QIN Yuchu. Multi-scale semantic prior features guided street view image inpainting algorithm [J]. Journal of University of Chinese Academy of Sciences, 2025, 42(4): 496-507. |
| [5] | ZHONG Jinyan, CHEN Jun, LI Yu, WU Yewei, GE Xiaoqing. Cross-modal retrieval method based on MFF-SFE for remote sensing image-text [J]. Journal of University of Chinese Academy of Sciences, 2025, 42(2): 236-247. |
| [6] | ZHOU Wenxue, ZHANG Huachun. Lightweight network for fast ship detection in SAR images [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(6): 776-785. |
| [7] | YU Yongsheng, LUO Tiejian. Seamless image completion via GAN inversion [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(5): 705-714. |
| [8] | CHEN Jingwei, LI Yu, CHEN Jun, ZHANG Hongqun. Building extraction method based on MFF-Deeplabv3+ network for high-resolution remote sensing images [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(5): 654-664. |
| [9] | HUANG Yulin, LIANG Lei, LI Weijun, XI Xiaohuan. Point cloud compression of deep learning based on multi-scale feature and attention mechanism [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(5): 687-694. |
| [10] | LIN Yutong, WANG Hong, CHAI Tuanyao. Multi-scale featured convolution neural network-based soybean phenotypic prediction [J]. Journal of University of Chinese Academy of Sciences, 2024, 41(4): 468-476. |
| [11] | XIAO Jun, SHI Guangtian. Three-dimensional point cloud denoising [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(5): 577-595. |
| [12] | YAO Mufeng, ZAN Luyang, LI Baipeng, LI Qingting, CHEN Zhengchao. Building change detection from remote sensing images using CAR-Siamese net [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(3): 380-387. |
| [13] | SHENG Xiaoguang, WANG Ying, ZHANG Yingwei, XIANG Ruoxi, FU Hongping. A weighted incremental learning scheme for effective academic warning [J]. Journal of University of Chinese Academy of Sciences, 2023, 40(3): 422-432. |
| [14] | CHEN Ruonan, PENG Ling, LIU Yufei, WEI Zhichao, LYU Beiru, CHEN Deyue. Road information extraction and application in the suburban mountainous area based on remote sensing images [J]. Journal of University of Chinese Academy of Sciences, 2022, 39(5): 658-667. |
| [15] | GU Yumin, YAN Fuli. Building extraction based on UNet++ network with different backbones [J]. Journal of University of Chinese Academy of Sciences, 2022, 39(4): 512-523. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn