[1] Federici G, Biel W, Gilbert M R, et al.European DEMO design strategy and consequences for materials[J]. Nuclear Fusion, 2017, 57(9): 092002. DOI: 10.1088/1741-4326/57/9/092002. [2] Eich T, Sieglin B, Thornton A J, et al.ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade[J]. Nuclear Materials and Energy, 2017, 12: 84-90. DOI: 10.1016/j.nme.2017.04.014. [3] You J H, Visca E, Bachmann C, et al.European DEMO divertor target: Operational requirements and material-design interface[J]. Nuclear Materials and Energy, 2016, 9: 171-176. DOI: 10.1016/j.nme.2016.02.005. [4] Hasegawa A, Fukuda M, Nogami S, et al.Neutron irradiation effects on tungsten materials[J]. Fusion Engineering and Design, 2014, 89(7/8): 1568-1572. DOI: 10.1016/j.fusengdes.2014.04.035. [5] Yu X G, Gou F J, Tian X.Molecular dynamics study of the effect of hydrogen on the mechanical properties of tungsten[J]. Journal of Nuclear Materials, 2013, 441(1/2/3): 324-330. DOI: 10.1016/j.jnucmat.2013.06.018. [6] 刘松畅, 余新刚. 单晶钨辐照损伤的分子动力学研究[J].中国科学院大学学报,DOI: 10.7523/j.ucas.2022.087. [7] Pitts R A, Bardin S, Bazylev B, et al.Physics conclusions in support of ITER W divertor monoblock shaping[J]. Nuclear Materials and Energy, 2017, 12: 60-74. DOI: 10.1016/j.nme.2017.03.005. [8] You J H, Visca E, Barrett T, et al.European divertor target concepts for DEMO: Design rationales and high heat flux performance[J]. Nuclear Materials and Energy, 2018, 16: 1-11. DOI: 10.1016/j.nme.2018.05.012. [9] Kallenbach A, Bernert M, Dux R, et al.Impurity seeding for tokamak power exhaust: From present devices via ITER to DEMO[J]. Plasma Physics and Controlled Fusion, 2013, 55(12): 124041. DOI: 10.1088/0741-3335/55/12/124041. [10] Li M Y, You J H.Design options to mitigate deep cracking of tungsten armor[J]. Fusion Engineering and Design, 2017, 124: 468-472. DOI: 10.1016/j.fusengdes.2017.01.015. [11] 陈然, 王增辉, 倪明玖. 强磁场对导电流体热毛细流动和换热影响的实验研究[J]. 中国科学院大学学报, 2019, 36(1): 25-30. DOI: 10.7523/j.issn.2095-6134.2019.01.005. [12] Wang H Y, Hu J S, Gao X, et al.Influence of Li and B coatings of metal walls on deuterium retention and plasma confinement in HT-7[J]. Nuclear Fusion, 2012, 52(10): 103002. DOI: 10.1088/0029-5515/52/10/103002. [13] Zuo G Z, Hu J S, Zhen S, et al.Comparison of various wall conditionings on the reduction of H content and particle recycling in EAST[J]. Plasma Physics and Controlled Fusion, 2012, 54(1): 015014. DOI: 10.1088/0741-3335/54/1/015014. [14] Kugel H W, Mansfield D, Maingi R, et al. Evaporated lithium surface coatings in NSTX[J]. Journal of Nuclear Materials, 2009, 390/391: 1000-1004. DOI: 10.1016/j.jnucmat.2009.01.262. [15] Bell M G, Kugel H W, Kaita R, et al.Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment[J]. Plasma Physics and Controlled Fusion, 2009, 51(12): 124054. DOI: 10.1088/0741-3335/51/12/124054. [16] Rindt P, Korving S Q, Morgan T W, et al.Performance of liquid-lithium-filled 3D-printed tungsten divertor targets under deuterium loading with ELM-like pulses in Magnum-PSI[J]. Nuclear Fusion, 2021, 61(6): 066026. DOI: 10.1088/1741-4326/abf854. [17] Yamamoto Y, Kunugi T.Direct numerical simulation of liquid metal free-surface turbulent flows imposed on wall-normal magnetic field[J]. Fusion Engineering and Design, 2018, 136: 925-930. DOI: 10.1016/j.fusengdes.2018.04.041. [18] Hoashi E, Yoshihashi-Suzuki S, Nanba H, et al.Numerical study on free surface flow of liquid metal lithium for IFMIF[J]. Fusion Engineering and Design, 2013, 88(9/10): 2515-2519. DOI: 10.1016/j.fusengdes.2013.05.059. [19] Bühler L, Mistrangelo C, Najuch T.Magnetohydrodynamic flows in model porous structures[J]. Fusion Engineering and Design, 2015, 98: 1239-1243. DOI: 10.1016/j.fusengdes.2015.01.018. [20] Khodak A, Maingi R.Modeling of liquid lithium flow in porous plasma facing material[J]. Nuclear Materials and Energy, 2021, 26: 100935. DOI: 10.1016/j.nme.2021.100935. [21] Watts E T, Krim J, Widom A.Experimental observation of interfacial slippage at the boundary of molecularly thin films with gold substrates[J]. Physical Review B, 1990, 41(6): 3466-3472. DOI: 10.1103/physrevb.41.3466. [22] Israelachvili J N.Measurement of the viscosity of liquids in very thin films[J]. Journal of Colloid and Interface Science, 1986, 110(1): 263-271. DOI: 10.1016/0021-9797(86)90376-0. [23] Thompson P A, Robbins M O.Shear flow near solids: Epitaxial order and flow boundary conditions[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 1990, 41(12): 6830-6837. DOI: 10.1103/physreva.41.6830. [24] Zou C X, Sun X G, Xu C, et al.Wetting characteristics of lithium droplet on iron surfaces in atomic scale: A molecular dynamics simulation[J]. Computational Materials Science, 2018, 149: 435-441. DOI: 10.1016/j.commatsci.2018.03.058. [25] Sun X G, Xiao S F, Deng H Q, et al.Molecular dynamics simulation of wetting behaviors of Li on W surfaces[J]. Fusion Engineering and Design, 2017, 117: 188-193. DOI: 10.1016/j.fusengdes.2016.06.037. [26] Xu S, Fan X F, Gu C Z, et al.First principles and molecular dynamics study of Li wetting and diffusion on W surfaces[J]. Journal of Nuclear Materials, 2020, 539: 152345. DOI: 10.1016/j.jnucmat.2020.152345. [27] Liu S, Yu X.Molecular dynamics study on the slippage of liquid lithium flow in tungsten nanochannels[J]. Nuclear Fusion, 2023, 63(3): 036007. DOI: 10.1088/1741-4326/acb27c. [28] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. DOI: 10.1006/jcph.1995.1039. [29] Liu S C, Yu X G, Zhang N M.An embedded-atom method interatomic potential for lithium-iron binary system and its applications in the liquid first wall system[J]. Journal of Nuclear Materials, 2024, 589: 154867. DOI: 10.1016/j.jnucmat.2023.154867. [30] Ushigusa K, Seki M, Suganuma K, et al.Electron cyclotron resonance discharge cleaning by using LHRF system on JT-60U[J]. Fusion Engineering and Design, 1999, 45(2): 137-144. DOI: 10.1016/S0920-3796(99)00002-2. [31] Ning R H, Li Y G, Zhou W H, et al.Modeling D retention in W under D ions and neutrons irradiation[J]. Journal of Nuclear Materials, 2012, 430(1/2/3): 20-26. DOI: 10.1016/j.jnucmat.2012.06.029. |