[1] Ushigusa K, Seki M, Suganuma K, et al. Electron cyclotron resonance discharge cleaning by using LHRF system on JT-60U[J]. Fusion Engineering and Design, 1999, 45(2): 137-144. DOI:10.1016/S0920-3796(99)00002-2. [2] Federici G, Biel W, Gilbert M R, et al. European DEMO design strategy and consequences for materials[J]. Nuclear Fusion, 2017, 57(9): 092002. DOI:10.1088/1741-4326/57/9/092002. [3] Ning R H, Li Y G, Zhou W H, et al. Modeling D retention in W under D ions and neutrons irradiation[J]. Journal of Nuclear Materials, 2012, 430(1/2/3): 20-26. DOI:10.1016/j.jnucmat.2012.06.029. [4] Sang C F, Sun J Z, Bonnin X, et al. Modelling of hydrogen isotope retention in the tungsten divertor of EAST during ELMy H-mode[J]. Fusion Engineering and Design, 2014, 89(9/10): 2214-2219. DOI:10.1016/j.fusengdes.2014.01.040. [5] Rafique M, Chae S, Kim Y S. Surface, structural and tensile properties of proton beam irradiated zirconium[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 368: 120-128. DOI:10.1016/j.nimb.2015.12.001. [6] Hasegawa A, Fukuda M, Nogami S, et al. Neutron irradiation effects on tungsten materials[J]. Fusion Engineering and Design, 2014, 89(7/8): 1568-1572. DOI:10.1016/j.fusengdes.2014.04.035. [7] Maruyama T, Harayama M. Neutron-irradiation effect on the thermal-conductivity and dimensional change of graphite materials[J]. Journal of Nuclear Materials, 1992, 195(1/2): 44-50. DOI:10.1016/0022-3115(92)90362-O. [8] Parashar A, Singh D. Molecular dynamics based study of an irradiated single crystal of niobium[J]. Computational Materials Science, 2017, 131: 48-54. DOI:10.1016/j.commatsci.2017.01.028. [9] Zhou Y, Chen B, He H Y, et al. Displacement cascades in monocrystalline silicon: effects of temperature, strain, and PKA energy[J]. Nuclear Technology, 2020, 206(1): 32-39. DOI:10.1080/00295450.2019.1613850. [10] Beeler B, Asta M, Hosemann P, et al. Effects of applied strain on radiation damage generation in body-centered cubic iron[J]. Journal of Nuclear Materials, 2015, 459: 159-165. DOI:10.1016/j.jnucmat.2014.12.111. [11] Wei G, Ren F, Qin W, et al. Evolution of helium bubbles below different tungsten surfaces under neutron irradiation and non-irradiation conditions[J]. Computational Materials Science, 2018, 148: 242-248. DOI:10.1016/j.commatsci.2018.02.050. [12] Yang X D, Deng H Q, Hu N W, et al. Molecular dynamics simulation of the displacement cascades in tungsten with interstitial helium atoms[J]. Fusion Science and Technology, 2014, 66(1): 112-117. DOI:10.13182/FST13-742. [13] Juslin N, Erhart P, Traskelin P, et al. Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system[J]. Journal of Applied Physics, 2005, 98(12): 123520. DOI:10.1063/1.2149492. [14] Yang X, Hassanein A. Molecular dynamics simulation of deuterium trapping and bubble formation in tungsten[J]. Journal of Nuclear Materials, 2013, 434(1/2/3): 1-6. DOI:10.1016/j.jnucmat.2012.10.045. [15] Wu Y, Krstic P, Zhou F Y, et al. Damage at a tungsten surface induced by impacts of self-atoms[J]. Journal of Nuclear Materials, 2015, 467: 480-487. DOI:10.1016/j.jnucmat.2015.09.049. [16] Xiang Y, Zhang B, Shi L Q. Evolution of bubble in tungsten irradiated by deuterium of low energy and high flux by molecular dynamics simulations[J]. Applied Surface Science, 2022, 606: 154715. DOI:10.1016/j.apsusc.2022.154715. [17] Yu X G, Gou F J, Li B W, et al. Numerical study of the effect of hydrogen on the crack propagation behavior of single crystal tungsten[J]. Fusion Engineering and Design, 2014, 89(7/8): 1096-1100. DOI:10.1016/j.fusengdes.2013.12.007. [18] Parrinello M, Rahman A. Crystal structure and pair potentials: a molecular-dynamics study[J]. Physical Review Letters, 1980, 45(14): 1196-1199. DOI:10.1103/physrevlett.45.1196. [19] Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, General Physics, 1985, 31(3): 1695-1697. DOI:10.1103/physreva.31.1695. [20] Stoller R E, Odette G R, Wirth B D. Primary damage formation in bcc iron[J]. Journal of Nuclear Materials, 1997, 251: 49-60. DOI:10.1016/S0022-3115(97)00256-0. [21] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. DOI:10.1088/0965-0393/18/1/015012. [22] Honeycutt J D, Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. The Journal of Physical Chemistry, 1987, 91(19): 4950-4963. DOI:10.1021/j100303a014. [23] Tsai D H. The virial theorem and stress calculation in molecular dynamics[J]. The Journal of Chemical Physics, 1979, 70(3): 1375-1382. DOI:10.1063/1.437577. [24] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. DOI:10.1006/jcph.1995.1039. [25] Park N Y, Kim Y C, Seok H K, et al. Molecular dynamics simulation of irradiation damage in tungsten[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 265(2): 547-552. DOI:10.1016/j.nimb.2007.10.003. [26] Pokor C, Brechet Y, Dubuisson P, et al. Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part I: Evolution of the microstructure[J]. Journal of Nuclear Materials, 2004, 326(1): 19-29. DOI:10.1016/j.jnucmat.2003.11.007. [27] Hossain M Z, Marian J. Stress-dependent solute energetics in W-Re alloys from first-principles calculations[J]. Acta Materialia, 2014, 80: 107-117. DOI:10.1016/j.actamat.2014.07.028. [28] Li X, Gao C, Xiong X L, et al. Hydrogen diffusion in α-Fe under an applied 3-axis strain: a quantum manifestation[J]. International Journal of Hydrogen Energy, 2015, 40(32): 10340-10345. DOI:10.1016/j.ijhydene.2015.06.089. [29] Wang W M, Roth J, Lindig S, et al. Blister formation of tungsten due to ion bombardment[J]. Journal of Nuclear Materials, 2001, 299(2): 124-131. DOI:10.1016/S0022-3115(01)00679-1. [30] Zhang T, Chu W Y, Gao K W, et al. Study of correlation between hydrogen-induced stress and hydrogen embrittlement[J]. Materials Science and Engineering: A, 2003, 347(1/2): 291-299. DOI:10.1016/S0921-5093(02)00600-7. [31] Aymar R, Team I J C, Home T. Present status and future prospect of the ITER project[J]. Journal of Nuclear Materials, 1998, 258/259/260/261/262/263: 56-64. DOI:10.1016/s0022-3115(98)00354-7. [32] T Tanabe, T Ohgo, M Wada, et al. Material mixing on W/C twin limiter in TEXTOR-94[J]. Fusion Engineering and Design, 2000, 49/50: 355-362. DOI:10.1016/S0920-3796(00)00396-3. [33] Yu X G, Gou F J, Tian X. Molecular dynamics study of the effect of hydrogen on the mechanical properties of tungsten[J]. Journal of Nuclear Materials, 2013, 441(1/2/3): 324-330. DOI:10.1016/j.jnucmat.2013.06.018. [34] Wei W, Yu X G. Molecular dynamics study of the effect of lithium on the tensile behaviors of bcc iron[J]. Materials Today Communications, 2020, 24: 101217. DOI:10.1016/j.mtcomm.2020.101217. [35] Cimalla V, Rohlig C C, Pezoldt J, et al. Nanomechanics of single crystalline tungsten nanowires[J]. Journal of Nanomaterials, 2008, 2008: 638947. DOI:10.1155/2008/638947. [36] Rafique M, Afzal N, Ahmad R, et al. Mechanical behavior of low-dose neutron-irradiated polycrystalline zirconium[J]. Radiation Effects and Defects in Solids, 2012, 167(4): 289-297. DOI:10.1080/10420150.2011.644552. [37] Li Y, Chen H, Chen Y, et al. Point defect effects on tensile strength of α-zirconium studied by molecular dynamics simulations[J]. Nuclear Materials and Energy, 2019, 20: 100683. DOI:10.1016/j.nme.2019.100683. [38] Lin P D, Nie J F, Liu M D. Investigation of the effects of point defects on the tensile strength of BCC-Fe using molecular dynamics[J]. Applied Physics A, 2021, 127(7): 565. DOI:10.1007/s00339-021-04720-5. |