[1] Choo G H, Seo J, Yoon J, et al. Analysis of long-term (2005-2018) trends in tropospheric NO2 percentiles over Northeast Asia[J]. Atmospheric Pollution Research, 2020, 11(8): 1429-1440.DOI:10.1016/j.apr.2020.05.012. [2] Yu Y, Liu H R. Economic growth, industrial structure and nitrogen oxide emissions reduction and prediction in China[J]. Atmospheric Pollution Research, 2020, 11(7): 1042-1050.DOI:10.1016/j.apr.2020.03.011. [3] Ren H J, Koshy P, Chen W F, et al. Photocatalytic materials and technologies for air purification[J]. Journal of Hazardous Materials, 2017, 325: 340-366.DOI:10.1016/j.jhazmat.2016.08.072. [4] Wang X C, Anpo M, Fu X Z. Current developments in photocatalysis and photocatalytic materials[M]. Amsterdam: Elsevier, 2020:1-6.DOI:10.1016/b978-0-12-819000-5.00001-1. [5] Chen H H, Nanayakkara C E, Grassian V H. Titanium dioxide photocatalysis in atmospheric chemistry[J]. Chemical Reviews, 2012, 112(11): 5919-5948.DOI:10.1021/cr3002092. [6] Pelaez M, Nolan N T, Pillai S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis B: Environmental, 2012, 125: 331-349.DOI:10.1016/j.apcatb.2012.05.036. [7] Sugrañez R, Balbuena J, Cruz-Yusta M, et al. Efficient behaviour of hematite towards the photocatalytic degradation of NOx gases[J]. Applied Catalysis B: Environmental, 2015, 165: 529-536.DOI:10.1016/j.apcatb.2014.10.025. [8] Balbuena J, Cruz-Yusta M, Pastor A, et al. A-Fe2O3/SiO2 composites for the enhanced photocatalytic NO oxidation[J]. Journal of Alloys and Compounds, 2018, 735: 1553-1561.DOI:10.1016/j.jallcom.2017.11.259. [9] Balbuena J, Cruz-Yusta M, Cuevas A L, et al. Hematite porous architectures as enhanced air purification photocatalyst[J]. Journal of Alloys and Compounds, 2019, 797: 166-173.DOI:10.1016/j.jallcom.2019.05.113. [10] Rodriguez J A, Jirsak T, Liu G, et al. Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2(110) and NO2?O vacancy interactions[J]. Journal of the American Chemical Society, 2001, 123(39): 9597-9605.DOI:10.1021/ja011131i. [11] Liu Z M, Ma L L, Junaid A S M. NO and NO2 adsorption on Al2O3 and Ga modified Al2O3 surfaces: a density functional theory study[J]. The Journal of Physical Chemistry C, 2010, 114(10): 4445-4450.DOI:10.1021/jp907925w. [12] Yu Y Y, Diebold U, Gong X Q. NO adsorption and diffusion on hydroxylated rutile TiO2(110)[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(40): 26594-26598.DOI:10.1039/c5cp04584c. [13] Xie X Y, Wang Q, Fang W H, et al. DFT study on reaction mechanism of nitric oxide to ammonia and water on a hydroxylated rutile TiO2(110) surface[J]. The Journal of Physical Chemistry C, 2017, 121(30): 16373-16380.DOI:10.1021/acs.jpcc.7b04811. [14] Pan J, Hu Z B. Simulation of CTAB bilayer adsorbed on Au(100), Au(110), and Au(111) surfaces: structure stability and dynamic properties[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(1): 38-49.DOI:10.7523/j.issn.2095-6134.2017.01.006. [15] Fang L C, Hao K R, Yan Q B, et al. Adsorption and migration of Li-ion in layered SnSe2: a first principle study[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(6): 735-742.DOI:10.7523/j.issn.2095-6134.2018.06.004. [16] Song Z J, Wang B, Yu J, et al. Density functional study on the heterogeneous oxidation of NO over α-Fe2O3 catalyst by H2O2: effect of oxygen vacancy[J]. Applied Surface Science, 2017, 413: 292-301.DOI:10.1016/j.apsusc.2017.04.011. [17] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.DOI:10.1103/PhysRevLett.77.3865. [18] Li F F, Shi C M, Wang X F, et al. The important role of oxygen defect for NO gas-sensing behavior of α-Fe2O3 (001) surface: predicted by density functional theory[J]. Computational Materials Science, 2018, 146: 1-8.DOI:10.1016/j.commatsci.2017.12.065. [19] Rohrbach A, Hafner J, Kresse G. Ab initio study of the (0001) surfaces of hematite and chromia: influence of strong electronic correlations[J]. Physcial Review B, 2004, 70(12): 1-17.DOI:10.1103/physrevb.70.125426. [20] Von Rudorff G F, Jakobsen R, Rosso K M, et al. Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics[J]. Journal of Physics: Condensed Matter, 2016, 28(39): 394001.DOI:10.1088/0953-8984/28/39/394001. [21] Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials[J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502.DOI:10.1088/0953-8984/21/39/395502. [22] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B:Condensed Matter, 1990, 41(1): 7892-7895.DOI:10.1103/physrevb.41.7892. [23] Liao P L, Keith J A, Carter E A. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis[J]. Journal of the American Chemical Society, 2012, 134(32): 13296-13309.DOI:10.1021/ja301567f. [24] Nguyen M T, Seriani N, Gebauer R. Water adsorption and dissociation on α-Fe2O3 (0001): PBE+U calculations[J]. The Journal of Chemical Physics, 2013, 138(19):194709.DOI:10.1063/1.4804999. [25] Nguyen M T, Seriani N, Piccinin S, et al. Photo-driven oxidation of water on α-Fe2O3 surfaces: an ab initio study[J]. The Journal of Chemical Physics, 2014, 140(6): 064703.DOI:10.1063/1.4865103. [26] Nguyen M T, Piccinin S, Seriani N, et al. Photo-oxidation of water on defective hematite(0001)[J]. ACS Catalysis, 2015, 5(2): 715-721.DOI:10.1021/cs5017326. [27] Zhao H L, Sheng X, Fabris S, et al. Heterogeneous reactions of SO2 on the hematite(0001) surface[J]. The Journal of Chemical Physics, 2018, 149(19): 194703.DOI:10.1063/1.5037847. [28] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.DOI:10.1002/jcc.20495. [29] Rohrbach A, Hafner J. Molecular adsorption of NO on NiO(100): DFT and DFT+U calculations[J]. Physical Review B, 2005, 71(4): 1-7.DOI:10.1103/physrevb.71.045405. [30] Souvi S M O, Badawi M, Paul J F, et al. A DFT study of the hematite surface state in the presence of H2, H2O and O2[J]. Surface Science, 2013, 610: 7-15.DOI:10.1016/j.susc.2021.12.012. [31] Bergermayer W, Schweiger H, Wimmer E. Ab initio thermodynamics of oxide surfaces: O2 on Fe2O3 (0001)[J]. Physical Review B, 2004, 69(19): 195409.DOI:10.1103/physrevb.69.195409. [32] Atkins P, Paula J. Physical chemistry[M]. Oxford: Oxford University Press, 2010. [33] National Institute of Standards and Technology, U.S. Department of Commerce. NIST standard reference database 13. NIST-JANAF thermochemical tables [EB/OL]. (2019-06-11) [2020-05-08]. https://janaf.nist.gov/. [34] Busca G, Lorenzelli V. Infrared study of the adsorption of nitrogen dioxide, nitric oxide and nitrous oxide on hematite[J]. Journal of Catalysis, 1981, 72(2): 303-313.DOI:10.1016/0021-9517(81)90013-0. |