[1] Wei Y Y, Brainard R L. Advanced processes for 193-nm immersion lithography[M]. Bellingham, Wash.: SPIE Press, 2009. DOI: 10.1117/3.820233. [2] Wieggers R C, Goedheer W J, Akdim M R, et al. A particle-in-cell plus Monte Carlo study of plasma-induced damage of normal incidence collector optics used in extreme ultraviolet lithography[J]. Journal of Applied Physics, 2008, 103(1): 013308. DOI: 10.1063/1.2829783. [3] Oestreich S, Klein R, Scholze F, et al. Multilayer reflectance during exposure to EUV radiation[C]//International Symposium on Optical Science and Technology. Proc SPIE 4146, Soft X-Ray and EUV Imaging Systems, San Diego, CA, USA. 2000, 4146: 64-71. DOI: 10.1117/12.406677. [4] Meiling H, Meijer H, Banine V, et al. First performance results of the ASML alpha demo tool[C]//SPIE 31st International Symposium on Advanced Lithography. Proc SPIE 6151, Emerging Lithographic Technologies X, San Jose, California, USA. 2006, 6151: 49-60. DOI: 10.1117/12.657348. [5] 鹿国庆, 卢启鹏, 彭忠琦, 等. 极紫外光学元件表面碳污染模型的建立[J]. 光学学报, 2013, 33(12): 366-372.10.3788/aos201333.1234001. [6] Chen J Q, Louis E, Harmsen R, et al. In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers[J]. Applied Surface Science, 2011, 258(1): 7-12. DOI: 10.1016/j.apsusc.2011.07.121. [7] van der Velden M H L, Brok W J M, van der Mullen J J A M, et al. Kinetic simulation of an extreme ultraviolet radiation driven plasma near a multilayer mirror[J]. Journal of Applied Physics, 2006, 100(7): 073303. DOI: 10.1063/1.2356085. [8] van der Velden M H L, Brok W J M, van der Mullen J J A M, et al. Particle-in-cell Monte Carlo simulations of an extreme ultraviolet radiation driven plasma[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(3 Pt 2): 036406. DOI: 10.1103/PhysRevE.73.036406. [9] Wieggers R C, Goedheer W J, Louis E, et al. Plasma-induced damage of multilayer coatings in EUVL[C]//International Congress on Optics and Optoelectronics. Proc SPIE 6586, Damage to VUV, EUV, and X-Ray Optics, Prague, Czech Republic. 2007, 6586: 151-162. DOI: 10.1117/12.724889. [10] Wang S S, Ye Z B, Pu G, et al. In-situ non-destructive removal of tin particles by low-energy plasma for imitation of EUV optical mirrors self-cleaning[J]. Vacuum, 2023, 212: 111963. DOI: 10.1016/j.vacuum.2023.111963. [11] Liang G Y, Zhong H W, Zhang S J, et al. Molecular dynamics study of damage nearby silicon surface bombarded by energetic carbon ions[J]. Surface and Coatings Technology, 2020, 385: 125350. DOI: 10.1016/j.surfcoat.2020.125350. [12] Fu B Q, Wang J, Qiu M J, et al. Retention/reflection of hydrogen and surface evolution during cumulative bombardment of low-energy hydrogen on tungsten: a molecular dynamics study[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2020, 462: 55-61. DOI: 10.1016/j.nimb.2019.11.002. [13] Zhang M, Rao Z X, Kim K S, et al. Molecular dynamics simulation of stress induced by energetic particle bombardment in Mo thin films[J]. Materialia, 2021, 16: 101043. DOI: 10.1016/j.mtla.2021.101043. [14] Lopez-Cazalilla A, Jussila J, Nordlund K, et al. Effect of surface morphology on Tungsten sputtering yields[J]. Computational Materials Science, 2023, 216: 111876. DOI: 10.1016/j.commatsci.2022.111876. [15] Ito A, Nakamura H. Molecular dynamics simulation of collisions between hydrogen and graphite[J]. Journal of Plasma Physics, 2006, 72(6): 805. DOI: 10.1017/s0022377806005289. [16] Ito A, Nakamura H, Takayama A. Molecular dynamics simulation of the chemical interaction between hydrogen atom and graphene[J]. Journal of the Physical Society of Japan, 2008, 77(11): 114602. DOI: 10.1143/jpsj.77.114602. [17] Ito A, Nakamura H. Molecular dynamics simulation of bombardment of hydrogen atoms on graphite surface[J]. Communications in Computational Physics, 2008, 4(3):592-610. [18] Gołuński M, Hrabar S, Postawa Z. Mechanisms of particle ejection from free-standing two-layered graphene stimulated by keV argon gas cluster projectile bombardment - Molecular dynamics study[J]. Surface and Coatings Technology, 2020, 391: 125683. DOI: 10.1016/j.surfcoat.2020.125683. [19] Zabihi Z, Araghi H. Formation of nanopore in a suspended graphene sheet with argon cluster bombardment: a molecular dynamics simulation study[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2015, 343: 48-51. DOI: 10.1016/j.nimb.2014.11.022. [20] Sirotkin V V. Molecular dynamics study of the interaction of accelerated Argon atoms with a pyrolytic carbon surface[J]. Bulletin of the Russian Academy of Sciences: Physics, 2020, 84(6): 693-697. DOI: 10.3103/S1062873820060258. [21] Zhang X, Cao S W, Li Z, et al. Collisions of noble gas atoms with graphene and a graphene nanodome[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(9): 6515-6523. DOI: 10.1039/c7cp07548k. [22] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. DOI: 10.1006/jcph.1995.1039. [23] Brenner D W, Shenderova O A, Harrison J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[J]. Journal of Physics: Condensed Matter, 2002, 14(4): 783-802. DOI: 10.1088/0953-8984/14/4/312. [24] Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. The Journal of Chemical Physics, 2000, 112(14): 6472-6486. DOI: 10.1063/1.481208. [25] Inui N. Molecular dynamics simulations of Lennard-Jones systems confined between suspended nanoscale graphene sheets[J]. Physical Review E, 2019, 99: 022102. DOI: 10.1103/PhysRevE.99.022102. [26] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. DOI: 10.1038/nmat1849. [27] Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review. A, General Physics, 1985, 31(3): 1695-1697. DOI: 10.1103/physreva.31.1695. [28] Ji Z, Contreras-Torres F F, Jalbout A F, et al. Surface diffusion and coverage effect of Li atom on graphene as studied by several density functional theory methods[J]. Applied Surface Science, 2013, 285: 846-852. DOI: 10.1016/j.apsusc.2013.08.140. [29] Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985. DOI: 10.1063/1.1323224. [30] Stone A J, Wales D J. Theoretical studies of icosahedral C60 and some related species[J]. Chemical Physics Letters, 1986, 128(5/6): 501-503. DOI: 10.1016/0009-2614(86)80661-3. [31] Yamamura Y, Tawara H. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence[J]. Atomic Data and Nuclear Data Tables, 1996, 62(2): 149-253. DOI: 10.1006/adnd.1996.0005. |