[1] Zhao Y S, Gowda M, Liu W X, et al. Accuracy of genomic selection in European maize elite breeding populations[J]. Theoretical and Applied Genetics, 2012, 124(4): 769-776. DOI: 10.1007/s00122-011-1745-y. [2] Spindel J, Begum H, Akdemir D, et al. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines[J]. PLoS Genetics, 2015, 11(2): e1004982. DOI: 10.1371/journal.pgen.1004982. [3] Xavier A, Jarquin D, Howard R, et al. Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population[J]. G3-Genes Genomes Genetics, 2018, 8(2): 519-529. DOI: 10.1534/g3.117.300300. [4] Endelman J B. Ridge regression and other kernels for genomic selection with R package rrBLUP[J]. The Plant Genome, 2011, 4(3): 250-255. DOI: 10.3835/plantgenome2011.08.0024. [5] Wang J X, Joshi T, Valliyodan B, et al. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies[J]. BMC Genomics, 2015, 16: 1011. DOI: 10.1186/s12864-015-2217-6. [6] Rutkoski J E, Poland J, Jannink J L, et al. Imputation of unordered markers and the impact on genomic selection accuracy[J]. G3 Genes | Genomes | Genetics, 2013, 3(3): 427-439. DOI: 10.1534/g3.112.005363. [7] Sapoval N, Aghazadeh A, Nute M G, et al. Current progress and open challenges for applying deep learning across the biosciences[J]. Nature Communications, 2022, 13(1): 1-12. DOI: 10.1038/s41467-022-29268-7. [8] Tong L, Mitchel J, Chatlin K, et al. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis[J]. BMC Medical Informatics and Decision Making, 2020, 20(1): 225. DOI: 10.1186/s12911-020-01225-8. [9] Uppu S, Krishna A, Gopalan R P. A deep learning approach to detect SNP interactions[J]. Journal of Software, 2016, 11(10): 965-975. DOI: 10.17706/jsw.11.10.965-975. [10] Liang Z H, Huang J X, Zeng X, et al. DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions[J]. BMC Medical Genomics, 2016, 9(S2): 48. DOI: 10.1186/s12920-016-0207-4. [11] Lee G, Nho K, Kang B, et al. Predicting Alzheimer’s disease progression using multi-modal deep learning approach[J]. Scientific Reports, 2019, 9(1): 1-12. DOI: 10.1038/s41598-018-37769-z. [12] Zingaretti L M, Gezan S A, Ferrão L F V, et al.Exploring deep learning for complex trait genomic prediction in polyploid outcrossing species[J]. Frontiers in Plant Science, 2020, 11: 25. DOI: 10.3389/fpls.2020.00025. [13] Whalen S, Schreiber J, Noble W S, et al. Navigating the pitfalls of applying machine learning in genomics[J]. Nature Reviews Genetics, 2022, 23(3): 169-181. DOI: 10.1038/s41576-021-00434-9. [14] Xavier A, Beavis W D, Specht J E, et al. SoyNAM: soybean nested association mapping dataset[DB]. R package version, 2015, 1. [15] Song Q J, Yan L, Quigley C, et al. Genetic characterization of the soybean nested association mapping population[J]. The Plant Genome, 2017, 10(2): 10.3835/plantgenome,2016. 10.0109. DOI: 10.3835/plantgenome2016.10.0109. [16] Li Y, Willer C J, Ding J, et al. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes[J]. Genetic Epidemiology, 2010, 34(8): 816-834. DOI: 10.1002/gepi.20533. [17] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 2261-2269. DOI: 10.1109/CVPR.2017.243. [18] Zhang X Z, Wang Y F, Shi W S. pCAMP: performance comparison of machine learning packages on the edges[EB/OL]. (2019-06-05) [2023-03-24]. https://arxiv.org/abs/1906.01878. [19] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04) [2023-03-24]. https://arxiv.org/abs/1409.1556. [20] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1), 1929-1958. [21] Liu Y, Wang D L, He F, et al. Phenotype prediction and genome-wide association study using deep convolutional neural network of soybean[J]. Frontiers in Genetics, 2019, 10: 1091. DOI: 10.3389/fgene.2019.01091. [22] Schmutz J, Cannon S B, Schlueter J, et al. Erratum: genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 465(7294): 120. DOI: 10.1038/nature08957. [23] Grant D, Nelson R T, Cannon S B, et al. SoyBase, the USDA-ARS soybean genetics and genomics database[J]. Nucleic Acids Research, 2010, 38(Suppl 1): D843-D846. DOI: 10.1093/nar/gkp798. [24] Joshi T, Patil K, Fitzpatrick M R, et al. Soybean knowledge base (SoyKB): a web resource for soybean translational genomics[J]. BMC Genomics, 2012, 13(Suppl 1): S15. DOI: 10.1186/1471-2164-13-S1-S15. [25] Bateman A, Coin L, Durbin R, et al. The Pfam protein families database[J]. Nucleic Acids Research, 2004, 32 (Suppl 1): D138-D141. DOI: 10.1093/nar/gkh121. [26] Xu Z Y, Wang R K, Kong K K, et al. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean[J]. Frontiers in Plant Science, 2022, 13: 983650. DOI: 10.3389/fpls.2022.983650. |