[1] 徐杰,裴晓飞,杨波,等. 融合车辆轨迹预测的学习型自动驾驶决策[J].汽车安全与节能学报, 2022,13(2):317-324.DOI:10.3969/j.issn.1674-8484.2022.02.012. [2] 王卫锋, 胡靖昊, 贺琰, 等. 出租车司机的多源轨迹同轨分析[J]. 中国科学院大学学报, 2023, 40(3): 313-321. DOI: 10.7523/j.ucas.2021.0078. [3] Salzmann T, Ivanovic B, Chakravarty P, et al.Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data[C]//European Conference on Computer Vision. Glasgow: Springer, 2020: 683-700. DOI: 10.1007/978-3-030-58523-5_40. [4] Gilles T, Sabatini S, Tsishkou D, et al.HOME: heatmap output for future motion estimation[C]//2021 IEEE International Intelligent Transportation Systems Conference (ITSC). Indianapolis, IN, USA. IEEE, 2021: 500-507. DOI: 10.1109/ITSC48978.2021.9564944. [5] Liang M, Yang B, Hu R, et al.Learning lane graph representations for motion forecasting[C]// European Conference on Computer Vision. Glasgow: 2020: 541-556. DOI: 10.1007/978-3-030-58536-5_32. [6] Zhou Z K, Ye L Y, Wang J P, et al.HiVT: hierarchical vector transformer for multi-agent motion prediction[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 8813-8823. DOI: 10.1109/CVPR52688.2022.00862. [7] Zhao H, Gao J Y, Lan T, et al. TNT: target-driveN trajectory prediction[C]//Conference on Robot Learning. PMLR, 2021: 895-904. https://proceedings.mlr.press/v155/zhao21b.html. [8] Gu J R, Sun C, Zhao H.DenseTNT: End-to-end trajectory prediction from dense goal sets[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2021: 15283-15292. DOI: 10.1109/ICCV48922.2021.01502. [9] Gilles T, Sabatini S, Tsishkou D, et al.GOHOME: Graph-oriented heatmap output for future motion estimation[C]//2022 International Conference on Robotics and Automation (ICRA).Philadelphia, PA, USA. IEEE, 2022: 9107-9114. DOI: 10.1109/ICRA46639.2022.9812253 [10] Gilles T, Sabatini S, Tsishkou D, et al. THOMAS: trajectory heatmap output with learned multi-agent sampling[EB/OL]. 2021: 2110.06607.(2021-10-13)[2022-10-13].http://arxiv.org/abs/2110.06607v3. [11] Zhang Q C, Gao Y F, Zhang Y K, et al.TrajGen: Generating realistic and diverse trajectories with reactive and feasible agent behaviors for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24474-24487 . DOI: 10.1109/TITS.2022.3202185 [12] Zeng W Y, Liang M, Liao R J, et al.LaneRCNN: Distributed representations for graph-centric motion forecasting[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic. IEEE, 2021: 532-539. DOI: 10.1109/IROS51168.2021.9636035. [13] Varadarajan B, Hefny A, Srivastava A, et al.MultiPath++: Efficient information fusion and trajectory aggregation for behavior prediction[C]//2022 International Conference on Robotics and Automation (ICRA). ACM, 2022: 7814-7821. DOI: 10.1109/ICRA46639.2022.9812107. [14] Sun Q, Huang X, Gu J R, et al.M2I: from factored marginal trajectory prediction to interactive prediction[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 6533-6542. DOI: 10.1109/CVPR52688.2022.00643. [15] Rowe L, Ethier M, Dykhne E H, et al.FJMP: factorized joint multi-agent motion prediction over learned directed acyclic interaction graphs[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada. IEEE, 2023: 13745-13755. DOI: 10.1109/CVPR52729.2023.01321. [16] Li D, Zhang Q C, Lu S, et al. Conditional goal-oriented trajectory prediction for interacting vehicles[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, PP(99): 1-13. DOI: 10.1109/TNNLS.2023.3321564. [17] Jiang C, Cornman A, Park C, et al.MotionDiffuser: controllable multi-agent motion prediction using diffusion[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada. IEEE, 2023: 9644-9653. DOI: 10.1109/CVPR52729.2023.00930. [18] Phan-Minh T, Grigore E C, Boulton F A, et al.Covernet: Multimodal behavior prediction using trajectory sets[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 14062-14071. DOI: 10.1109/CVPR42600.2020.01408. [19] Chen Y X, Ivanovic B, Pavone M.ScePT: Scene-consistent, policy-based trajectory predictions for planning[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 17082-17091. DOI: 10.1109/CVPR52688.2022.01659. [20] Bi H K, Mao T L, Wang Z Q, et al.A deep learning-based framework for intersectional traffic simulation and editing[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(7): 2335-2348. DOI: 10.1109/TVCG.2018.2889834. [21] Chai Y N, Sapp B, Bansal M, et al. MultiPath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction[EB/OL]. 2019: 1910.05449.(2019-10-12)[2022-09-14].http://arxiv.org/abs/1910.05449v1. [22] Gao J Y, Sun C, Zhao H, et al.VectorNet: Encoding HD maps and agent dynamics from vectorized representation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 11522-11530. DOI: 10.1109/CVPR42600.2020.01154. [23] Luo W J, Park C, Cornman A, et al.JFP: Joint future prediction with interactive multi-agent modeling for autonomous driving[C]//Conference on Robot Learning. PMLR, 2023: 1457-1467. DOI: 10.48550/arXiv.2212.08710. [24] Cheng H, Liu M M, Chen L, et al.GATraj: A graph-and attention-based multi-agent trajectory prediction model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 205: 163-175. DOI: 10.1016/j.isprsjprs.2023.10.001 [25] 连静,丁荣琪,李琳辉,等.基于图模型和注意力机制的车辆轨迹预测方法[J].兵工学报, 2023, 44(7): 2162-2170. DOI: 10.12382/bgxb.2022.0117. [26] Yuan Y, Weng X S, Ou Y L, et al.AgentFormer: Agent-aware transformers for socio-temporal multi-agent forecasting[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2021: 9793-9803. DOI: 10.1109/ICCV48922.2021.00967. [27] Ngiam J, Caine B, Vasudevan V, et al. Scene Transformer: a unified architecture for predicting multiple agent trajectories[EB/OL]. 2021: 2106.08417.(2021-06-15)[2022-10-19].http://arxiv.org/abs/2106.08417v3. [28] Liu Y C, Zhang J H, Fang L J, et al.Multimodal motion prediction with stacked transformers[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 7573-7582. DOI: 10.1109/CVPR46437.2021.00749 [29] Huang Z Y, Liu H C, Lv C.GameFormer: game-theoretic modeling and learning of transformer-based interactive prediction and planning for autonomous driving[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France. IEEE, 2023: 3880-3890. DOI: 10.1109/ICCV51070.2023.00361. [30] Shi S S, Jiang L, Dai D X, et al.MTR++: multi-agent motion prediction with symmetric scene modeling and guided intention querying[J]. IEEE Trans Pattern Anal Mach Intell, 2024, 46(5): 3955-3971. DOI: 10.1109/tpami.2024.3352811. [31] 李文礼,韩迪,石晓辉,等.基于时-空注意力机制的车辆轨迹预测[J].中国公路学报, 2023, 36(1):226-239.DOI:10.19721/j.cnki.1001-7372.2023.01.018. [32] Pang Y T, Guo Z H, Zhuang B N. ProspectNet: weighted conditional attention for future interaction modeling in behavior prediction[EB/OL].2022: 2208.13848.(2022-08-29)[2022-11-04]. DOI:10.48550/arXiv.2208.13848. [33] 秦胜君,李婷.多交互车辆轨迹预测研究[J].计算机工程与应用, 2021, 57(11): 232-238.DOI:10.3778/j.issn.1002-8331.2005-0154. [34] 连静,李硕贤,刘一荻,等.基于车道目标引导的车辆轨迹预测[J].汽车工程, 2023, 45(8):1353-1361.DOI: 10.19562/j.chinasae.qcgc.2023.08.006 [35] Tang Y C, Salakhutdinov R. Multiple futures prediction[EB/OL] .2019: 10.48550/arXiv.1911.00997.(2019-11-04)[2022-09-05]. https://www.semanticscholar.org/reader/1928a851f7454223803d13e7260fa5f26979ffab. [36] Seff A, Cera B, Chen D, et al.MotionLM: multi-agent motion forecasting as language modeling[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France. IEEE, 2023: 8545-8556. DOI: 10.1109/ICCV51070.2023.00788. [37] 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42. DOI: 10.19721/j.cnki.1001-7372.2019.06.003. [38] 吴晓建,危一华,王爱春,等.基于融合Dropout与注意力机制的LSTM-GRU车辆轨迹预测[J].湖南大学学报(自然科学版), 2023, 50(4):65-75.DOI: 10.16339/j.cnki.hdxbzkb.2023155 [39] 张晓宁. 基于LSTM网络的车辆轨迹预测研究[J].汽车实用技术, 2020, 45(22): 32-33, 39.DOI:10.16638/j.cnki.1671-7988.2020.22.011. [40] Niedoba M, Lavington J, Liu Y P, et al. A diffusion-model of joint interactive navigation [EB/OL]. 2023: 2309.12508.(2023-09-21)[2023-10-30].http://arxiv.org/abs/2309.12508v2. [41] Chang W J, Tang C, Li C R, et al.Editing driver character: Socially-controllable behavior generation for interactive traffic simulation[J]. IEEE Robotics and Automation Letters, 2023, 8(9): 5432-5439. DOI: 10.1109/LRA.2023.3291897. [42] Tai Y, Yang J, Liu X M, et al.Memnet: A persistent memory network for image restoration[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy. IEEE, 2017: 4549-4557. DOI: 10.1109/ICCV.2017.486. [43] Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. 2018: 1810.04805.(2018-10-11)[2023-11-20].http://arxiv.org/abs/1810.04805v2. [44] Chang M F, Lambert J, Sangkloy P, et al.Argoverse: 3D tracking and forecasting with rich maps[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 8740-8749. DOI: 10.1109/CVPR.2019.00895. [45] 北京市交通发展研究院. TrafficHUT交通轨迹库. [EB/OL]. 2023. [2023-11-25].http://www.traffichut.net/. |