[1] Zhang J S, Li N.Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1/2/3): 351-377. DOI: 10.1016/j.jnucmat.2007.06.019. [2] Zhang J S.A review of steel corrosion by liquid lead and lead-bismuth[J]. Corrosion Science, 2009, 51(6): 1207-1227. DOI: 10.1016/j.corsci.2009.03.013. [3] Ballinger R G, Lim J.An overview of corrosion issues for the design and operation of high-temperature lead- and lead-bismuth-cooled reactor systems[J]. Nuclear Technology, 2004, 147(3): 418-435. DOI: 10.13182/NT04-A3540. [4] Wang W T, Yang C X, You Y H, et al.A review of corrosion behavior of structural steel in liquid lead-bismuth eutectic[J]. Crystals, 2023, 13(6): 968. DOI: 10.3390/cryst13060968. [5] Zhang J S.Lead-bismuth eutectic (LBE): A coolant candidate for gen. IV advanced nuclear reactor concepts[J]. Advanced Engineering Materials, 2014, 16(4): 349-356. DOI: 10.1002/adem.201300296. [6] Gorynin I V, Karzov G P, Markov V G, et al.Structural materials for atomic reactors with liquid metal heat-transfer agents in the form of lead or lead: Bismuth alloy[J]. Metal Science and Heat Treatment, 1999, 41(9): 384-388. DOI: 10.1007/BF02469876. [7] Barbier F, Rusanov A.Corrosion behavior of steels in flowing lead-bismuth[J]. Journal of Nuclear Materials, 2001, 296(1/2/3): 231-236. DOI: 10.1016/S0022-3115(01)00521-9. [8] Hosemann P, Dickerson R, Dickerson P, et al.Transmission electron microscopy (TEM) on oxide layers formed on D9 stainless steel in lead bismuth eutectic (LBE)[J]. Corrosion Science, 2013, 66: 196-202. DOI: 10.1016/j.corsci.2012.09.019. [9] Zhu Z G, Zhang Q, Tan J B, et al.Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550 °C: Effects of exposure time and dissolved oxygen concentration[J]. Corrosion Science, 2022, 204: 110405. DOI: 10.1016/j.corsci.2022.110405. [10] Song C, Li D D, Xu Y C, et al.Corrosion related properties of iron (100) surface in liquid lead and bismuth environments: A first-principles study[J]. Chinese Physics B, 2014, 23(5): 056801. DOI: 10.1088/1674-1056/23/5/056801. [11] Xu Y C, Song C, Zhang Y G, et al.An energetic evaluation of dissolution corrosion capabilities of liquid metals on iron surface[J]. Physical Chemistry Chemical Physics, 2014, 16(31): 16837-16845. DOI: 10.1039/c4cp01224k. [12] Long X L, Shi J L, Zhu J, et al.First-principles calculation of the resistance to lead-bismuth eutectic corrosion on Fe (111) surface of austenitic stainless steel[J]. Surface Science, 2022, 725: 122132. DOI: 10.1016/j.susc.2022.122132. [13] Zhou T, Gao X, Ma Z W, et al.Atomistic simulation of α-Fe(100)-lead-bismuth eutectic (LBE) solid-liquid interface[J]. Journal of Nuclear Materials, 2021, 555: 153107. DOI: 10.1016/j.jnucmat.2021.153107. [14] Chen L M, Xu S, He X X, et al.Molecular dynamics study of corrosion behavior of iron with vacancies exposed to lead-bismuth eutectic[J]. Materials and Corrosion, 2023, 74(5): 793-802. DOI: 10.1002/maco.202213375. [15] Gao Y, Takahashi M, Cavallotti C, et al.Molecular dynamics simulation of metallic impurity diffusion in liquid lead-bismuth eutectic (LBE)[J]. Journal of Nuclear Materials, 2018, 501: 253-260. DOI: 10.1016/j.jnucmat.2018.01.044. [16] Daw M S, Baskes M I.Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443-6453. DOI: 10.1103/physrevb.29.6443. [17] Belashchenko D K.Computer simulation of the properties of liquid metals: Gallium, lead, and bismuth[J]. Russian Journal of Physical Chemistry A, 2012, 86(5): 779-790. DOI: 10.1134/S0036024412050056. [18] Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69(14): 144113. DOI: 10.1103/physrevb.69.144113. [19] Gao Y, Raos G, Cavallotti C, et al.Molecular dynamics simulation on physical properties of liquid lead, bismuth and lead-bismuth eutectic (LBE)[J]. Procedia Engineering, 2016, 157: 214-221. DOI: 10.1016/j.proeng.2016.08.359. [20] Nosé S.A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. DOI: 10.1063/1.447334. [21] Hoover W G.Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review. A, General Physics, 1985, 31(3): 1695-1697. DOI: 10.1103/physreva.31.1695. [22] Parrinello M, Rahman A.Crystal structure and pair potentials: A molecular-dynamics study[J]. Physical Review Letters, 1980, 45(14): 1196-1199. DOI: 10.1103/physrevlett.45.1196. [23] Müller-Plathe F.Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59(5 Pt A): 4894-4898. DOI: 10.1103/physreve.59.4894. [24] Xu B, Liu S, Yu X.Molecular simulation study of the effect of iron clusters on the viscosity of liquid lithium[J]. Journal of University of Chinese Academy of Sciences, 2023, 40(2): 165-172. DOI: 10.7523/j.ucas.2021.0062. [25] Thompson A P, Aktulga H M, Berger R, et al.LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. DOI: 10.1016/j.cpc.2021.108171. [26] Stukowski A.Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. DOI: 10.1088/0965-0393/18/1/015012. [27] Weeks J R, Romano A J.Liquidus curves and corrosion of Fe, Ti, Zr, and Cu in liquid Bi-Pb alloys[J]. Corrosion, 1969, 25(3): 131-136. DOI: 10.5006/0010-9312-25.3.131. [28] Xu C, Li Z Y, Chen L G, et al.Atomic-scale insights into the precipitation behaviors of copper atoms in liquid lithium[J]. Fusion Engineering and Design, 2023, 194: 113901. DOI: 10.1016/j.fusengdes.2023.113901. [29] Cui W Z, Shen Z J, Yang J G, et al.Effect of chaotic movements of nanoparticles for nanofluid heat transfer augmentation by molecular dynamics simulation[J]. Applied Thermal Engineering, 2015, 76: 261-271. DOI: 10.1016/j.applthermaleng.2014.11.030. [30] Gan X L, Xiao S F, Deng H Q, et al.Clustering of Fe atoms in liquid Li and its effect on the viscosity of liquid Li[J]. Nuclear Fusion, 2016, 56(4): 046004. DOI: 10.1088/0029-5515/56/4/046004. [31] He Y R, Jin Y, Chen H S, et al.Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12): 2272-2281. DOI: 10.1016/j.ijheatmasstransfer.2006.10.024. [32] Zwanzig R.On the relation between self-diffusion and viscosity of liquids[J]. The Journal of Chemical Physics, 1983, 79(9): 4507-4508. DOI: 10.1063/1.446338. |